Bird DM, Opperman CH, Davies KG. Interactions between bacteria and plant-parasitic nematodes: now and then. Int J Parasitol. 2003;33(11):1269–76.
Article
CAS
PubMed
Google Scholar
Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol. 2008;26(8):909–15.
Article
CAS
PubMed
Google Scholar
Decraemer W, Hunt DJ. In: Perry RN, Moens M, editors. Structure and classification. In: Plant nematology. Wallingford: CAB International; 2006. p. 3–32.
Chapter
Google Scholar
Quist CW, Smant G, Helder J. Evolution of plant parasitism in the phylum Nematoda. Annu Rev Phytopathol. 2015;53:289–310.
Article
CAS
PubMed
Google Scholar
Paganini J, Campan-Fournier A, Da Rocha M, Gouret P, Pontarotti P, Wajnberg E, et al. Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. PLoS One. 2012;7(11):e50875.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haegeman A, Jones JT, Danchin EG. Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol Plant-Microbe Interact. 2011;24(8):879–87.
Article
CAS
PubMed
Google Scholar
Blaxter M, Koutsovoulos G. The evolution of parasitism in Nematoda. Parasitology. 2015;142:26–39.
Article
Google Scholar
Smant G, Helder J, Goverse A. Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. Plant J. 2018;93(4):686–702.
Article
CAS
PubMed
Google Scholar
Danchin EGJ, Rosso M-N, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat B, et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. PNAS. 2010;107(41):17651–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eves-van den Akker S, Birch PR. Opening the effector protein toolbox for plant-parasitic cyst nematode interactions. Mol Plant. 2016;9(11):1451–3.
Article
CAS
PubMed
Google Scholar
Varden FA, De la Concepcion JC, Maidment JH, Banfield MJ. Taking the stage: effectors in the spotlight. Curr Opin Plant Biol. 2017;38:25–33.
Article
CAS
PubMed
Google Scholar
Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB. Plants versus pathogens: an evolutionary arms race. Funct Plant Biol. 2010;37(6):499–512.
Article
PubMed
PubMed Central
Google Scholar
Geric Stare B, Fouville D, Sirca S, Gallot A, Urek G, Grenier E. Molecular variability and evolution of the pectate lyase (pel-2) parasitism gene in cyst nematodes parasitizing different solanaceous plants. J Mol Evol. 2011;72(2):169–81.
Article
CAS
PubMed
Google Scholar
Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EG, Da Rocha M, et al. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol. 2016;17(1):124.
Article
PubMed
PubMed Central
CAS
Google Scholar
Poppe S, Dorsheimer L, Happel P, Stukenbrock EH. Rapidly evolving genes are key players in host specialization and virulence of the fungal wheat pathogen Zymoseptoria tritici (Mycosphaerella graminicola). PLoS Pathog. 2015;11(7):e1005055.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alenda C, Montarry J, Grenier E. Human influence on the dispersal and genetic structure of French Globodera tabacum populations. Infect Genet Evol. 2014;27:309–17.
Article
PubMed
Google Scholar
Blanchard A, Esquibet M, Fouville D, Grenier E. Ranbpm homologue genes characterised in the cyst nematodes Globodera pallida and Globodera ‘mexicana’. Physiol Mol Plant Pathol. 2005;67(1):15–22.
Article
CAS
Google Scholar
Sobczak M, Golinowski W. In: Jones J, Gheysen G, Fenoll C, editors. Cyst Nematodes and Syncytia. In: Genomics and Molecular Genetics of Plant-Nematode Interactions. Dordrecht: Springer Netherlands; 2011. p. 61–82.
Chapter
Google Scholar
Thorpe P, Mantelin S, Cock PJ, Blok VC, Coke MC, Eves-van den Akker S, et al. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida. BMC Genomics. 2014;15:923.
Article
PubMed
PubMed Central
Google Scholar
Haegeman A, Mantelin S, Jones JT, Gheysen G. Functional roles of effectors of plant-parasitic nematodes. Gene. 2012;492(1):19–31.
Article
CAS
PubMed
Google Scholar
Turner SJ. Population decline of potato cyst nematodes (Globodera rostochiensis, G. pallida) in field soils in Northern Ireland. Ann Appl Biol. 1996;129(2):315–22.
Article
Google Scholar
Den Nijs L, Karssen G. Globodera rostochiensis and Globodera pallida. EPPO Bull. 2004;34(2):309–14.
Article
Google Scholar
Madani M, Ward LJ, De Boer SH. Multiplex real-time polymerase chain reaction for identifying potato cyst nematodes, Globodera pallida and Globodera rostochiensis, and the tobacco cyst nematode, Globodera tabacum. Can J Plant Pathol. 2008;30(4):554–64.
Article
CAS
Google Scholar
Grenier E, Blok VC, Jones JT, Fouville D, Mugniery D. Identification of gene expression differences between Globodera pallida and G. ‘mexicana’ by suppression subtractive hybridization. Mol Plant-Microbe Interact. 2002;3(4):217–26.
CAS
Google Scholar
Bossis M, Mugniéry D. Specific status of six Globodera parasites of solanaceous plants studied by means of two-dimensional gel electrophoresis with a comparison of gel patterns by a computed system. Fundam Appl Nematol. 1993;16(1):47–56.
Google Scholar
Konczal M, Koteja P, Stuglik MT, Radwan J, Babik W. Accuracy of allele frequency estimation using pooled RNA-Seq. Mol Ecol Resour. 2014;14(2):381–92.
Article
CAS
PubMed
Google Scholar
Jones JT, Kumar A, Pylypenko LA, Thirugnanasambandam A, Castelli L, Chapman S, et al. Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Mol Plant-Microbe Interact. 2009;10(6):815–28.
CAS
Google Scholar
Thorpe P. Bioinformatic and functional characterisation of Globodera pallida effector genes. Ph.D. Thesis. The University of Leeds, Faculty of Biological Sciences; 2012. http://etheses.whiterose.ac.uk/4568/.
Eves-van den Akker S, Lilley CJ, Jones JT, Urwin PE. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLoS Pathog. 2014;10(9):e1004391.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ali S, Magne M, Chen S, Obradovic N, Jamshaid L, Wang X, et al. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses. Front Plant Sci. 2015;6:623.
Article
PubMed
PubMed Central
Google Scholar
Ali S, Magne M, Chen S, Cote O, Stare BG, Obradovic N, et al. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses. PLoS One. 2015;10(1):e0115042.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duceppe MO, Lafond-Lapalme J, Palomares-Rius JE, Sabeh M, Blok V, Moffett P, et al. Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida. Sci Rep. 2017;7(1):3882.
Article
PubMed
PubMed Central
CAS
Google Scholar
Palomares-Rius JE, Hedley P, Cock PJ, Morris JA, Jones JT, Blok VC. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate. PeerJ. 2016;4:e1654.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cui JK, Peng H, Qiao F, Wang GF, Huang WK, Wu DQ, et al. Characterization of putative effectors from the cereal cyst nematode Heterodera avenae. Phytopathology. 2018;108(2):264–74.
Article
CAS
PubMed
Google Scholar
Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, et al. Nematode effector proteins: an emerging paradigm of parasitism. New Phytol. 2013;199(4):879–94.
Article
PubMed
Google Scholar
Arendt J, Reznick D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol. 2008;23(1):26–32.
Article
PubMed
Google Scholar
Chen C, Cui L, Chen Y, Zhang H, Liu P, Wu P, et al. Transcriptional responses of wheat and the cereal cyst nematode Heterodera avenae during their early contact stage. Sci Rep. 2017;7(1):14471.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chronis D, Chen S, Lu S, Hewezi T, Carpenter SC, Loria R, et al. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J. 2013;74(2):185–96.
Article
CAS
PubMed
Google Scholar
Muoz C, San Francisco J, Gutirrez B, Gonzlez J. Role of the ubiquitin-proteasome systems in the biology and virulence of protozoan parasites. Biomed Res Int. 2015;2015:13.
Google Scholar
Strunnikov AV, Jessberger R. Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur J Biochem. 1999;263(1):6–13.
Article
CAS
PubMed
Google Scholar
Sabeh M, Duceppe MO, St-Arnaud M, Mimee B. Transcriptome-wide selection of a reliable set of reference genes for gene expression studies in potato cyst nematodes (Globodera spp.). PLoS One. 2018;13(3):e0193840.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dagan T, Talmor Y, Graur D. Ratios of radical to conservative amino acid replacement are affected by mutational and compositional factors and may not be indicative of positive Darwinian selection. Mol Biol Evol. 2002;19(7):1022–5.
Article
CAS
PubMed
Google Scholar
Doyle EA, Lambert KN. Meloidogyne javanica chorismate mutase 1 alters plant cell development. Mol Plant-Microbe Interact. 2003;16(2):123–31.
Article
CAS
PubMed
Google Scholar
Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, et al. Metabolic priming by a secreted fungal effector. Nature. 2011;478(7369):395–8.
Article
CAS
PubMed
Google Scholar
Bekal S, Niblack TL, Lambert KN. A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Mol Plant-Microbe Interact. 2003;16(5):439–46.
Article
CAS
PubMed
Google Scholar
Fenwick DW. Investigations on the emergence of larvae from cysts of the potato-root eelworm Heterodera rostochiensis; technique and variability. J Helminthol. 1949;23(3–4):157–70.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Bryant SH. CD-search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24(5):637–44.
Article
CAS
PubMed
Google Scholar
Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, et al. The NCBI BioSystems database. Nucleic Acids Res. 2010;38:D492–6.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
CAS
PubMed
PubMed Central
Google Scholar
The UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158–D69.
Article
CAS
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:W465–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564–77.
Article
CAS
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Article
CAS
PubMed
Google Scholar
Chevenet F, Brun C, Banuls AL, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics. 2006;7:439.
Article
PubMed
PubMed Central
CAS
Google Scholar
Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, et al. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998;392(6671):71–5.
Article
CAS
PubMed
Google Scholar
Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15(7):410.
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint 2012;arXiv:1207.3907.
Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180(2):977–93.
Article
PubMed
PubMed Central
Google Scholar
Jeffreys H. The theory of probability. Oxford: Oxford University Press; 1998.
Google Scholar
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.
Article
CAS
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
CAS
PubMed
Google Scholar
Kall L, Krogh A, Sonnhammer EL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004;338(5):1027–36.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar