Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.
Article
CAS
PubMed
Google Scholar
Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, et al. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ. 2009;32(5):486–96.
Article
CAS
PubMed
Google Scholar
Abreu IA, Farinha AP, Negrao S, Goncalves N, Fonseca C, Rodrigues M, et al. Coping with abiotic stress: proteome changes for crop improvement. J Proteome. 2013;93:145–68.
Article
CAS
Google Scholar
Urano K, Kurihara Y, Seki M, Shinozaki K. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol. 2010;13(2):132–8.
Article
CAS
PubMed
Google Scholar
Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, et al. Mechanisms of plant salt response: insights from proteomics. J Proteome Res. 2011;11(1):49–67.
Article
PubMed
CAS
Google Scholar
Zhao Q, Zhang H, Wang T, Chen S, Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteome. 2013;82:230–53.
Article
CAS
Google Scholar
Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhan Y, Wu Q, Chen Y, Tang M, Sun C, Sun J, et al. Comparative proteomic analysis of okra (Abelmoschus esculentus L.) seedlings under salt stress. BMC Genomics. 2019;20(1):381.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Wei M, Liu A, Zhou R, Li D, Dossa K, et al. Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress. J Proteome. 2019;201:73–83.
Article
CAS
Google Scholar
Lutts S, Almansouri M, Kinet JM. Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus. Plant Sci. 2004;167(1):9–18.
Article
CAS
Google Scholar
Gandonou CB, Errabii T, Abrini J, Idaomar M, Senhaji NS. Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell Tissue Org. 2006;87(1):9–16.
Article
CAS
Google Scholar
Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Senhaji NS. Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant. 2007;29(2):95.
Article
CAS
Google Scholar
Patade VY, Suprasanna P, Bapat VA. Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regul. 2008;55(3):169.
Article
CAS
Google Scholar
Summart J, Thanonkeo P, Panichajakul S, Prathepha P, McManus M. Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. Afr J Biotechnol. 2010;9(2):145–152.
Lutts S, Kinet J, Bouharmont J. Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. J Plant Physiol. 1996;149(1–2):186–95.
Article
CAS
Google Scholar
Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J. Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot. 2008;62(1):60–8.
Article
CAS
Google Scholar
Dai S, Chen S. Understanding information processes at the proteomics level. In: Springer Handbook of Bio-/Neuroinformatics. Berlin: Springer. 2014;57–72.
Chapter
Google Scholar
Passamani LZ, Bertolazi AA, Ramos AC, Santa-Catarina C, Thelen JJ, Silveira V. Embryogenic competence acquisition in sugar cane callus is associated with differential H+-pump abundance and activity. J Proteome Res. 2018;17(8):2767–79.
Article
PubMed
CAS
Google Scholar
Reis RS, De Moura VE, Heringer AS, Santa-Catarina C, Silveira V. Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J Proteome. 2016;130:170–9.
Article
CAS
Google Scholar
Liu B, Shan X, Wu Y, Su S, Li S, Liu H, et al. iTRAQ-Based quantitative proteomic analysis of embryogenic and non-embryogenic calli derived from a maize (Zea mays L.) Inbred line Y423. Int J Mol Sci. 2018;19(12):4004.
Article
PubMed Central
Google Scholar
Sun L, Wu Y, Zou H, Su S, Li S, Shan X, et al. Comparative proteomic analysis of the H99 inbred maize (Zea mays L.) line in embryogenic and non-embryogenic callus during somatic embryogenesis. Plant Cell Tissue Org. 2013;113(1):103–19.
Article
CAS
Google Scholar
Ge F, Hu H, Huang X, Zhang Y, Wang Y, Li Z, et al. Metabolomic and proteomic analysis of maize embryonic callus induced from immature embryo. Sci Rep. 2017;7(1):1004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin L, Tao Y, Zhao K, Shao J, Li X, Liu G, et al. Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation. Proteomics. 2007;7(5):755–68.
Article
CAS
PubMed
Google Scholar
Ribeiro DG, De Almeida RF, Fontes W, De Souza CM, De Sousa MV, Ricart CAO, et al. Stress and cell cycle regulation during somatic embryogenesis plays a key role in oil palm callus development. J Proteome. 2019;192:137–46.
Article
CAS
Google Scholar
Pan Z, Zhu S, Guan R, Deng X. Identification of 2, 4-D-responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress. Plant Cell Tissue Org. 2010;103(2):145–53.
Article
CAS
Google Scholar
Rode C, Lindhorst K, Braun HP, Winkelmann T. From callus to embryo: a proteomic view on the development and maturation of somatic embryos in Cyclamen persicum. Planta. 2012;235(5):995–1011.
Article
CAS
PubMed
Google Scholar
Tan BC, Chin CF, Liddell S, Alderson P. Proteomic analysis of callus development in Vanilla planifolia Andrews. Plant Mol Biol Report. 2013;31(6):1220–9.
Article
CAS
Google Scholar
Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Govinden-Soulange J, et al. Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol. 2010;10(1):82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Chaturvedi P, Fu J, Cai Q, Weckwerth W, Yang P. Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn. Spp. baijianlian). J Proteome. 2016;131:61–70.
Article
CAS
Google Scholar
Zhang X, Wei LQ, Wang ZZ, Wang T. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress. J Integr Plant Biol. 2013;55(3):262–76.
Article
CAS
PubMed
Google Scholar
Meng XJ, Zhao Q, Jin YD, Yu JJ, Yin ZP, Chen SX, Dai SJ. Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis. J Proteome. 2016;143:365–81.
Article
CAS
Google Scholar
Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, et al. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res. 2011;10(9):3852–70.
Article
CAS
PubMed
Google Scholar
Yu J, Chen S, Wang T, Sun G, Dai S. Comparative proteomic analysis of Puccinellia tenuiflora leaves under Na2CO3 stress. Int J Mol Sci. 2013;14(1):1740–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Q, Suo J, Chen S, Jin Y, Ma X, Yin Z, et al. Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Sci Rep. 2016;6:32717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suo J, Zhang H, Zhao Q, Zhang N, Zhang Y, Li Y, et al. Na2CO3-responsive photosynthetic and ROS scavenging mechanisms in chloroplasts of alkaligrass revealed by phosphoproteomics. BioRxiv. 2019;871046.
Yin Z, Zhang H, Zhao Q, Yoo MJ, Zhu N, Yu J, et al. Physiological and comparative proteomic analyses of saline-alkali NaHCO3-responses in leaves of halophyte Puccinellia tenuiflora. Plant Soil. 2019;437(1–2):137–58.
Article
CAS
Google Scholar
Guo L, Shi D, Wang D. The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. J Agron Crop Sci. 2010;196(2):123–35.
Article
CAS
Google Scholar
Rienties IM, Vink J, Borst JW, Russinova E, De Vries SC. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14λ and the PP2C phosphatase KAPP. Planta. 2005;221(3):394–405.
Article
CAS
PubMed
Google Scholar
Fehér A. Somatic embryogenesis—stress-induced remodeling of plant cell fate. BBA Gene Regul Mech. 2015;1849(4):385–402.
Google Scholar
Zhang J, Ma H, Chen S, Ji M, Perl A, Kovacs L, et al. Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet sauvignon-a proteomic approach. Plant Sci. 2009;177(2):103–13.
Article
CAS
Google Scholar
Finnie C, Andersen CH, Borch J, Gjetting S, Christensen AB, De Boer A, et al. Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus? Plant Mol Biol. 2002;49(2):137–47.
Article
CAS
Google Scholar
Oh CS, Pedley KF, Martin GB. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK α. Plant Cell. 2010;22(1):260–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kandasamy MK, Gilliland LU, McKinney EC, Meagher RB. One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell. 2001;13(7):1541–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teixeira J, Söndahl M, Kirby E. Somatic embryogenesis from immature inflorescences of oil palm. Plant Cell Rep. 1994;13(5):247–50.
Article
CAS
PubMed
Google Scholar
Malerba M, Contran N, Tonelli M, Crosti P, Cerana R. Role of nitric oxide in actin depolymerization and programmed cell death induced by fusicoccin in sycamore (Acer pseudoplatanus) cultured cells. Physiol Plant. 2008;133(2):449–57.
Article
CAS
PubMed
Google Scholar
Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, Hariharan N, et al. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science. 2011;333(6046):1141–4.
Article
CAS
PubMed
Google Scholar
You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. 2015;6:1092.
Article
PubMed
PubMed Central
Google Scholar
Holmes P, Farquharson R, Hall PJ, Rolfe BG. Proteomic analysis of root meristems and the effects of acetohydroxyacid synthase-inhibiting herbicides in the root of Medicago truncatula. J Proteome Res. 2006;5(9):2309–16.
Article
CAS
PubMed
Google Scholar
Gossett DR, Millhollon EP, Lucas MC, Banks SW, Marney MM. The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep. 1994;13(9):498–503.
Article
CAS
PubMed
Google Scholar
Zhou X, Han Y, Yang W, Xi T. Somatic embryogenesis and analysis of peroxidase in cultured lettuce (Lactuca sativa L.) cotyledons. Ann Bot. 1992;69(2):97–100.
Article
CAS
Google Scholar
El Hadrami I, Baaziz M. Somatic embryogenesis and analysis of peroxidases in Phoenix dactylifera L. Biol Plant. 1995;37(2):197–203.
Article
Google Scholar
Almeida AM, Parreira JR, Santos R, Duque AS, Francisco R, Tomé DF, et al. A proteomics study of the induction of somatic embryogenesis in Medicago truncatula using 2DE and MALDI-TOF/TOF. Physiol Plant. 2012;146(2):236–49.
Article
CAS
PubMed
Google Scholar
Ld DG, De Pinto M, Arrigoni O. Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Plant. 1997;100(4):894–900.
Article
Google Scholar
Pan Z, Guan R, Zhu S, Deng X. Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep. 2009;28(2):281–9.
Article
PubMed
CAS
Google Scholar
Youssefian S, Nakamura M, Orudgev E, Kondo N. Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine (thiol) lyase modifies plant responses to oxidative stress. Plant Physiol. 2001;126(3):1001–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Briat JF, Duc C, Ravet K, Gaymard F. Ferritins and iron storage in plants. BBA Gen Subjects. 2010;1800(8):806–14.
Article
CAS
Google Scholar
Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci. 2005;45(2):437–48.
Article
CAS
Google Scholar
Kuźniak E, Gabara B, Skłodowska M, Libik-Konieczny M, Miszalski Z. Effects of NaCl on the response of Mesembryanthemum crystallinum callus to Botrytis cinerea infection. Biol Plant. 2011;55(3):423–30.
Article
CAS
Google Scholar
Zhu JK. Plant salt tolerance. Trends Plant Sci. 2001;6(2):66–71.
Article
CAS
PubMed
Google Scholar
Ehsanpour A, Fatahian N. Effects of salt and proline on Medicago sativa callus. Plant Cell Tissue Org. 2003;73(1):53–6.
Article
CAS
Google Scholar
Gangopadhyay G, Basu S, Mukherjee BB, Gupta S. Effects of salt and osmotic shocks on unadapted and adapted callus lines of tobacco. Plant Cell Tissue Org. 1997;49(1):45–52.
Article
CAS
Google Scholar
Cano EA, Pérez-Alfocea F, Moreno V, Bolarin MC. Responses to NaCl stress of cultivated and wild tomato species and their hybrids in callus cultures. Plant Cell Rep. 1996;15(10):791–4.
Article
CAS
PubMed
Google Scholar
Garcia AB, Engler J, Iyer S, Gerats T, Van Montagu M, Caplan AB. Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol. 1997;115(1):159–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T. Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol. 2004;161(6):701–8.
Article
CAS
PubMed
Google Scholar
Lyngved R, Renaut J, Hausman JF, Iversen TH, Hvoslef-Eide AK. Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE. J Plant Growth Regul. 2008;27(4):353.
Article
CAS
Google Scholar
Zuo Z, Mahajan PB. Recombinant expression of maize nucleotide excision repair protein Rad23 in Escherichia coli. Protein Expr Purif. 2005;41(2):287–97.
Article
CAS
PubMed
Google Scholar
Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, et al. Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics. 2005;5(2):461–73.
Article
CAS
PubMed
Google Scholar
Fortes AM, Santos F, Choi YH, Silva MS, Figueiredo A, Sousa L, et al. Organogenic nodule development in hop (Humulus lupulus L.): transcript and metabolic responses. BMC Genomics. 2008;9(1):445.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zörb C, Schmitt S, Mühling KH. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics. 2010;10(24):4441–9.
Article
PubMed
CAS
Google Scholar
Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E. Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.). Proteome Sci. 2012;10(1):3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Correia S, Vinhas R, Manadas B, Lourenço AS, Veríssimo P, Canhoto JM. Comparative proteomic analysis of auxin-induced embryogenic and nonembryogenic tissues of the Solanaceous tree Cyphomandra betacea (Tamarillo). J Proteome Res. 2012;11(3):1666–75.
Article
CAS
PubMed
Google Scholar
Lin YL, Sung SC, Tsai HL, Yu TT, Radjacommare R, Usharani R, et al. The defective proteasome but not substrate recognition function is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. Plant Cell. 2011;23(7):2754–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C. Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep. 2008;27(2):347–56.
Article
CAS
PubMed
Google Scholar
Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG. Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol. 2005;137(4):1250–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Chen S, Zhang H, Shi L, Cao F, Guo L, et al. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis. J Proteome Res. 2010;9(12):6561–77.
Article
CAS
PubMed
Google Scholar
Li S, Yu J, Li Y, Zhang H, Bao X, Bian J, et al. Heat-responsive proteomics of a heat-sensitive spinach variety. Int J Mol Sci. 2019;20(16):3872.
Article
PubMed Central
Google Scholar
Yu J, Jin X, Sun X, Gao T, Chen X, She Y, et al. Hydrogen peroxide response in leaves of poplar (Populus simonii× Populus nigra) revealed from physiological and proteomic analyses. Int J Mol Sci. 2017;18(10):2085.
Article
PubMed Central
CAS
Google Scholar
Yu J, Zhang Y, Liu J, Wang L, Liu P, Yin Z, et al. Proteomic discovery of H2O2 response in roots and functional characterization of PutGLP gene from alkaligrass. Planta. 2018;248(5):1079–99.
Article
CAS
PubMed
Google Scholar
Suo J, Zhao Q, Zhang Z, Chen S, Liu G, Wei X, et al. Cytological and proteomic analyses of Osmunda cinnamomea germinating spores reveal characteristics of fern spore germination and rhizoid tip growth. Mol Cell Proteomics. 2015;14(9):2510–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Z, Balmant K, Geng S, Zhu N, Zhang T, Dufresne C, et al. Bicarbonate induced redox proteome changes in Arabidopsis suspension cells. Front Plant Sci. 2017;8:58.
PubMed
PubMed Central
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article
CAS
PubMed
Google Scholar
Wei S, Bian Y, Zhao Q, Chen S, Mao J, Song C, et al. Salinity-induced palmella formation mechanism in halotolerant algae Dunaliella salina revealed by quantitative proteomics and phosphoproteomics. Front Plant Sci. 2017;8:810.
Article
PubMed
PubMed Central
Google Scholar