Kulshrestha S, Seth CA, Sharma M, Sharma A, Mahajan R, Chauhan A. Biology and control of Rosellinia necatrix causing white root rot disease: a review. J Pure Appl Microbiol. 2014;8(3):1803–14.
Google Scholar
Farr DF, Rossman AY. National Fungus Collections from United States Department of Agriculture. Agricultural Res Serv. http://nt.ars-grin.gov/fungaldatabases/index.cfm. Accessed 30 May 2019.
Arakawa M, Nakamura H, Uetake Y, Matsumoto N. Presence and distribution of double-stranded RNA elements in the white root rot fungus Rosellinia necatrix. Mycoscience. 2002. https://doi.org/10.1007/s102670200004.
Article
CAS
Google Scholar
ten Hoopen GM, Krauss U. Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: a review. Crop Prot. 2006. https://doi.org/10.1016/j.cropro.2005.03.009.
Article
Google Scholar
Petrini LE. Rosellinia species of the temperate zone. Sydowia. 1993;44:169–281.
Google Scholar
Sztejnberg A, Madar Z. Host range of Dematophora necatrix, the cause of white root rot disease in fruit trees. Plant Dis. 1980. https://doi.org/10.1094/PD-64-662.
Article
Google Scholar
Pliego C, López-Herrera C, Ramos C, Cazorla FM. Developing tools to unravel the biological secrets of Rosellinia necatrix, an emergent threat to woody crops. Mol Plant Pathol. 2012. https://doi.org/10.1111/j.1364-3703.2011.00753.x.
Article
PubMed
PubMed Central
Google Scholar
Arjona-Girona I, López-Herrera CJ. First report of Rosellinia necatrix causing white root rot in mango trees in Spain. Plant Dis. 2018. https://doi.org/10.1094/PDIS-01-18-0133-PDN.
Article
Google Scholar
Pliego C, Kanematsu S, Ruano-Rosa D, de Vicente A, López-Herrera C, Cazorla FM, Ramos C. GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genet Biol. 2009. https://doi.org/10.1016/j.fgb.2008.11.009.
Article
CAS
PubMed
Google Scholar
Zumaquero A, Martínez-Ferri E, Matas AJ, Reeksting B, Olivier NA, Pliego-Alfaro F, et al. Rosellinia necatrix infection induces differential gene expression between tolerant and susceptible avocado rootstocks. PLoS One. 2019. https://doi.org/10.1371/journal.pone.0212359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ke X, Yin Z, Song N, Dai Q, Voegele RT, Liu Y, et al. Transcriptome profiling to identify genes involved in pathogenicity of Valsa mali on apple tree. Fungal Genet Biol. 2014. https://doi.org/10.1016/j.fgb.2014.04.004.
Article
CAS
PubMed
Google Scholar
Kim H, Lee SJ, Jo IH, Lee J, Bae W, Kim H, et al. Characterization of the Rosellinia necatrix transcriptome and genes related to pathogenesis by single-molecule mRNA sequencing. Plant Pathol J. 2017. https://doi.org/10.5423/PPJ.OA.03.2017.0046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu T, Kanematsu S, Yaegashi H. Draft genome sequence and transcriptional analysis of Rosellinia necatrix infected with a virulent mycovirus. Phytopathology. 2018. https://doi.org/10.1094/PHYTO-11-17-0365-R.
Article
CAS
PubMed
Google Scholar
Both M, Csukai M, Stumpf MPH, Spanu PD. Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell. 2005. https://doi.org/10.1105/tpc.105.032631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Both M, Eckert SE, Csukai M, Muller E, Dimopoulos G, Spanu PD. Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are potential virulence determinants. Mol Plant Microbe In. 2005. https://doi.org/10.1094/MPMI-18-0125.
Article
CAS
PubMed
Google Scholar
Wei Y, Liu T, Zhu M, Zhang W, Li H, Huang Z, et al. De novo transcriptome analysis of plant pathogenic fungus Myrothecium roridum and identification of genes associated with trichothecene mycotoxin biosynthesis. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18030497.
Article
PubMed Central
CAS
Google Scholar
Pérez-Nadales E, Almeida-Nogueira MF, Baldin C, Castanheira S, El Ghalid M, Grund E, et al. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol. 2014. https://doi.org/10.1016/j.fgb.2014.06.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005. https://doi.org/10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved prediction of fungal effector proteins from secretomes with Effector P 2.0. Mol Plant Pathol. 2018. https://doi.org/10.1111/mpp.12682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sperschneider J, Dodds PN, Singh KB, Taylor JM. ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning. New Phytol. 2017. https://doi.org/10.1111/nph.14946.
Article
PubMed
CAS
Google Scholar
Urban M, Cuzick A, Rutherford K, Irvine AG, Pedro H, Pant R, et al. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database. Nucleic Acids Res. 2017. https://doi.org/10.1093/nar/gkw1089.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, di Pietro A, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science. 2007. https://doi.org/10.1126/science.1143708.
Article
CAS
PubMed
Google Scholar
Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005. https://doi.org/10.1038/nature03449.
Article
CAS
PubMed
Google Scholar
Laluk K, Mengiste T. Necrotroph attacks on plants: wanton destruction or covert extortion? Arabidopsis Book. 2010. https://doi.org/10.1199/tab.0136.
Article
PubMed
PubMed Central
Google Scholar
Oliver RP, SVS I. Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol. 2004. https://doi.org/10.1111/j.1364-3703.2004.00228.x.
Article
CAS
PubMed
Google Scholar
Arjona-Girona I, Ariza M, López-Herrera C. Contribution of Rosellinia necatrix toxins to avocado white root rot. Eur J Plant Pathol. 2017. https://doi.org/10.1007/s10658-016-1074-8.
Article
CAS
Google Scholar
Whalley AJS. The xylariaceous way of life. Mycol Res. 1996. https://doi.org/10.1016/S0953-7562(96)80042-6.
Article
Google Scholar
Edwards RL, Maitland DJ, Whalley AJ. Metabolites of the higher fungi. Part 24. Cytochalasin N, O, P, Q, and R. New cytochalasins from the fungus Hypoxylon terricola Mill. J Chem Soc Perkin Trans. 1989. https://doi.org/10.1039/p19890000057.
Edwards RL, Maitland DJ, Whalley AJ. Metabolites of the higher fungi. Part 32. A phytotoxic bicyclo[4.1.0]hept-3-en-2-one from the fungus Rosellinia necatrix Prill. J Chem Soc Perkin Trans. 2001. https://doi.org/10.1039/b008195q.
Kanematsu S, Hayashi T, Kudo A. Isolation of Rosellinia necatrix mutants with impaired cytochalasin E production and its pathogenicity. Ann Phytopath Soc Japan. 1997. https://doi.org/10.3186/jjphytopath.63.425.
Article
CAS
Google Scholar
Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, et al. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol. 2004. https://doi.org/10.1128/AEM.70.3.1253-1262.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Chang JW, Cary M, Wright D, Bhatnagar TE, Cleveland GA, et al. Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl Environ Microbiol. 1995;61:2365–71.
CAS
PubMed
PubMed Central
Google Scholar
Morrissey JP, Osbourn AE. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev. 1999;63(3):708–24.
CAS
PubMed
PubMed Central
Google Scholar
George H, VanEtten HD. Characterization of pisatin-inducible cytochrome P450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. Fungal Genet Biol. 2001. https://doi.org/10.1006/fgbi.2001.1270.
Article
CAS
PubMed
Google Scholar
del Sorbo G, Schoonbeek H, de Waard MA. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol. 2000. https://doi.org/10.1006/fgbi.2000.1206.
Article
CAS
PubMed
Google Scholar
Bhattacharya A, Kourmpetli S, Ward DA, Thomas SG, Gong F, Powers SJ, et al. Characterization of the fungal gibberellin desaturase as a 2-oxoglutarate-dependent dioxygenase and its utilization for enhancing plant growth. Plant Physiol. 2012. https://doi.org/10.1104/pp.112.201756.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou X, Lee LYC, Xia K, Yan Y, Yu H. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell. 2010. https://doi.org/10.1016/j.devcel.2010.10.024.
Article
CAS
PubMed
Google Scholar
Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, et al. DELLAs control plant immune responses by modulating the balance and salicylic acid signaling. Curr Biol. 2008. https://doi.org/10.1016/j.cub.2008.03.060.
Article
CAS
PubMed
Google Scholar
Patkar RN, Naqvi NI. Fungal manipulation of hormone-regulated plant defense. PLoS Pathog. 2017. https://doi.org/10.1371/journal.ppat.1006334.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-y-Terrón R, Martínez-Contreras RD. Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiol Res. 2018. https://doi.org/10.1016/j.micres.2018.01.010.
Article
CAS
PubMed
Google Scholar
Sharon A, Elad Y, Barakat R, Tudzynski P. Phytohormones in Botrytis-plant interactions. In: Elad Y, Williamson B, Tudznski P, Delen N, editors. Botrytis: biology, pathology and control. 1, vol. 8. Dordecht: Kluwer Academic Publishers; 2004. p. 163–79.
Google Scholar
Chanclud E, Morel JB. Plant hormones: a fungal point of view. Mol Plant Pathol. 2016. https://doi.org/10.1111/mpp,12393.
Studt L, Schmidt FJ, Jahn L, Sieber CMK, Connolly LR, Niehaus EM, et al. Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl Environ Microbiol. 2013. https://doi.org/10.1128/AEM.01557-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manka M. Auxin and gibberellin-like substances synthesis by Fusarium isolates. Acta Microbiol Pol. 1980;29(4):365–74.
CAS
PubMed
Google Scholar
Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet. 2010. https://doi.org/10.1038/nrg2812.
Article
CAS
PubMed
Google Scholar
Stergiopoulos I, de Wit PJGM. Fungal effector proteins. Annu Rev Phytopathol. 2009. https://doi.org/10.1146/annurev.phyto.112408.132637.
Article
CAS
PubMed
Google Scholar
Ellis JG, Dodds PN. Showdown at the RXLR motif: serious differences of opinion in how effector proteins from filamentous eukaryotic pathogens enter plant cells. Proc Natl Acad Sci U S A. 2011. https://doi.org/10.1073/pnas.1111668108.
Article
CAS
Google Scholar
Kombrink A, Thomma BPHJ. LysM effectors: secreted proteins supporting fungal life. PLoS Pathog. 2013. https://doi.org/10.1371/journal.ppat.1003769.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Jonge R, Thomma BPHJ. Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol. 2009. https://doi.org/10.1016/j.tim.2009.01.002.
Article
CAS
PubMed
Google Scholar
Pliego C, Nowara D, Bonciani G, Gheroghe DM, Xu R, Surana P, et al. Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effertors. Mol Plant Microbe In. 2013. https://doi.org/10.1094/MPMI-01-13-0005-R.
Article
CAS
PubMed
Google Scholar
Pérez-Jiménez RM. A review of the biology and pathogenicity of Rosellinia necatrix- the cause of white root rot disease of fruit trees and other plants. J Phytopathol. 2006. https://doi.org/10.1111/j.1439-0434.2006.01101.x.
Article
Google Scholar
López-Herrera CJ, Zea-Bonilla T. Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Prot. 2007. https://doi.org/10.1016/j.cropro.2006.10.015.
Article
CAS
Google Scholar
Bluthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D. Biological profiling of gene groups utilizing gene ontology. Genome Inform. 2005. https://doi.org/10.11234/gi1990.16.106.
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003. https://doi.org/10.2144/03342mt01.
Article
CAS
PubMed
Google Scholar
Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal pertides: SignalP3.0. J Mol Biol. 2004. https://doi.org/10.1016/j.jmb.2004.05.028.
Article
CAS
Google Scholar
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007. https://doi.org/10.1093/bioinformatics/btm091.
Article
CAS
PubMed
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3- new capabilities and interfaces. Nucleic Acids Res. 2012. https://doi.org/10.1093/nar/qks596.
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001. https://doi.org/10.1093/nar/29.9.e45.
Article
Google Scholar