Nash TH. Lichen biology. 2nd ed. United States of America: Cambridge University Press, New York; 2008.
Book
Google Scholar
Honegger R. The symbiotic phenotype of lichen-forming Ascomycetes and their Endo- and Epibionts. In: Hock B, editor. Fungal associations. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research). 2nd ed. Berlin, Heidelberg: Springer; 2012. p. 287–339.
Ahmadjian V. The lichen Symbiosis. New York: Wiley; 1993.
Aschenbrenner IA, Cernava T, Berg G, Grube M. Understanding microbial multi-species symbioses. Front Microbiol. 2016;7(180):180.
PubMed
PubMed Central
Google Scholar
Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 2016;353(6298):488–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuovinen V, Ekman S, Thor G, Vanderpool D, Spribille T, Johannesson H. Two basidiomycete fungi in the cortex of wolf lichens. Curr Biol. 2019;29(3):476–83. e5.
Biont AV, Interactions I. Development of synthetic and natural lichens. The Lichen Symbiosis. New York: Wiley; 1993. p. 53–98.
Google Scholar
Galun M. CRC handbook of lichenology. Boca Raton: CRC Press; 1988.
Joneson S, Lutzoni F. Compatibility and thigmotropism in the lichen symbiosis: a reappraisal. Symbiosis. 2009;47(2):109–15.
Article
Google Scholar
Trembley ML, Ringli C, Honegger R. Morphological and molecular analysis of early stages in the resynthesis of the lichen Baeomyces rufus. Mycol Res. 2002;106(7):768–76.
Article
CAS
Google Scholar
Wang Y-Y, Liu B, Zhang X-Y, Zhou Q-M, Zhang T, Li H, et al. Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics. 2014;15(1):34.
Article
PubMed
PubMed Central
Google Scholar
Joneson S, Armaleo D, Lutzoni F. Fungal and algal gene expression in early developmental stages of lichen-symbiosis. Mycologia. 2011;103(2):291–306.
Article
CAS
PubMed
Google Scholar
Armaleo D, Müller O, Lutzoni F, Andrésson ÓS, Blanc G, Bode HB, et al. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics. 2019;20(1):605.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schaper T, Ott S. Photobiont selectivity and interspecific interactions in lichen communities. I. Culture experiments with the mycobiont Fulgensia bracteata. Plant Biol. 2003;5(4):441–50.
Article
Google Scholar
Meeßen J, Ott S. Recognition mechanisms during the pre-contact state of lichens: I. Mycobiont-photobiont interactions of the mycobiont of Fulgensia bracteata. Symbiosis. 2013;59(3):121–30.
Article
CAS
Google Scholar
Honegger R. Morphogenesis. In: Nash III TH, editor. Lichen biology. 2nd ed. New York: Cambridge University Press; 2008. p. 69–93.
Chapter
Google Scholar
Kon Y, Kashiwadani H, Masada M, Tamura G. Artificial syntheses of mycobionts of Usnea confusa ssp. kitamiensis and Usnea orientalis with their natural and nonnatural phycobiont. J Jpn Bot. 1993;68:129–37.
Google Scholar
Ahmadjian V, Jacobs JB. Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature. 1981;289(5794):169.
Article
Google Scholar
Ohmura Y. Taxonomic study of the genus Usnea (lichenized Ascomycetes) in Japan and Taiwan. J Hattori Bot Lab. 2001;90:1–96.
Google Scholar
Kon Y, Kashiwadani H, Kurokawa S. Induction of lichen thalli of Usnea confusa Asah. Ssp. kitamiensis Asah.) Asah. In vitro. J Jpn Bot 1990;65:26–32.
Kono M, Tanabe H, Ohmura Y, Satta Y, Terai Y. Physical contact and carbon transfer between a lichen-forming Trebouxia alga and a novel Alphaproteobacterium. Microbiology. 2017;163:678–91.
Article
CAS
PubMed
Google Scholar
Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT. The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci. 2012;3:82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. Bioessays. 2006;28(8):799–808.
Article
PubMed
Google Scholar
Gow NA, Latge J-P, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. 2017;5(3):1–25.
Google Scholar
Beauvais A, Latgé J-P. Special Issue: Fungal Cell Wall. J Fungi. 2018;4(3):91.
Article
Google Scholar
Scherrer S, De Vries OM, Dudler R, Wessels JG, Honegger R. Interfacial self-assembly of fungal hydrophobins of the lichen-forming ascomycetes Xanthoria parietina and X. ectaneoides. Fungal Genet Biol. 2000;30(1):81–93.
Article
CAS
PubMed
Google Scholar
Elix J, Stocker-Wörgötter E. Biochemistry and secondary metabolites. In: Nash III TH, editor. Lichen biology. 2nd ed. New York: Cambridge University Press; 2008. p. 104–33.
Chapter
Google Scholar
Honegger R. Ultrastructural studies in lichens: II. Mycobiont and Photobiont Cell-Wall surface-layers and adhering crystalline lichen products in four Parmeliaceae. New Phytol. 1986;103:0–797.
CAS
Google Scholar
Fernandes CM, Goldman GH, Del Poeta M. Biological roles played by sphingolipids in dimorphic and filamentous fungi. mBio. 2018;9(3):e00642–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cassilly C, Reynolds T. PS, It’s complicated: the roles of phosphatidylserine and phosphatidylethanolamine in the pathogenesis of Candida albicans and other microbial pathogens. J Fungi. 2018;4(1):28.
Article
CAS
Google Scholar
Consortium TU. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47(D1):D506–D15.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
DiMario RJ, Clayton H, Mukherjee A, Ludwig M, Moroney JV. Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol Plant. 2017;10(1):30–46.
Article
CAS
PubMed
Google Scholar
Aspatwar A, Haapanen S, Parkkila S. An update on the metabolic roles of carbonic anhydrases in the model alga Chlamydomonas reinhardtii. Metabolites. 2018;8(1):22.
Article
PubMed Central
CAS
Google Scholar
Couturier J, Touraine B, Briat J-F, Gaymard F, Rouhier N. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Front Plant Sci. 2013;4:259.
PubMed
PubMed Central
Google Scholar
Schürmann P, Buchanan BB. The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal. 2008;10(7):1235–74.
Article
PubMed
Google Scholar
Lines CEM, Ratcliffe RG, Rees TAV, Southon TE. A 13C NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner. New Phytol. 1989;111(3):447–56.
Article
CAS
PubMed
Google Scholar
Hill DJ, Smith DC. Lichen physiology XII. The ‘inhibition technique’. New Phytol. 1972;71(1):15–30.
Article
CAS
Google Scholar
Richardson DHS, Hill DJ, Smith DC. Lichen physiology: xi. The role of the alga in determining the pattern of carbohydrate movement between lichen Symbionts. New Phytol. 1968;67(3):469–86.
Article
CAS
Google Scholar
Richardson DHS, Smith DC. Lichen physiology. X. The isolated algal and fungal symbionts of Xanthoria aureola. New Phytologist. 1968;67(1):69–77.
Londesborough J, Richard P, Valkonen M, Viljanen K. Effect of C-terminal protein tags on pentitol and l-arabinose transport by Ambrosiozyma monospora Lat1 and Lat2 transporters in Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80(9):2737–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pereira I, Madeira A, Prista C, Loureiro-Dias MC, Leandro MJ. Characterization of new polyol/H+ symporters in Debaryomyces hansenii. PLoS One. 2014;9(2):e88180.
Article
PubMed
PubMed Central
CAS
Google Scholar
Proudfoot M, Kuznetsova E, Brown G, Rao NN, Kitagawa M, Mori H, et al. General enzymatic screens identify three new nucleotidases in Escherichia coli biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem. 2004;279(52):54687–94.
Article
CAS
PubMed
Google Scholar
Forchhammer K, Lüddecke J. Sensory properties of the PII signalling protein family. FEBS J. 2016;283(3):425–37.
Article
CAS
PubMed
Google Scholar
Huergo LF, Chandra G, Merrick M. PII signal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev. 2013;37(2):251–83.
Article
CAS
PubMed
Google Scholar
Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol. 2018;1(1):95.
Article
PubMed
PubMed Central
Google Scholar
Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476(7360):320.
Article
CAS
PubMed
Google Scholar
Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot J-F, et al. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep. 2017;7(1):17583.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci. 2007;104(suppl 1):8627–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS Nat. 2000;407(6800):81–6.
CAS
Google Scholar
Bonfante P, Genre A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010;1:48.
Article
PubMed
CAS
Google Scholar
Beckett R, Kranner I, Minibayeva FV. Stress physiology and the symbiosis. In: Nash III TH, editor. Lichen biology. New York: Cambridge University Press; 2008. p. 134–51.
Chapter
Google Scholar
Honegger R. Ultrastructural studies in lichens: I. Haustorial types and their frequencies in a range of lichens with trebouxioid photobionts. New Phytol. 1986;103(4):785–95.
Article
Google Scholar
Chervin RE, Baker GE, Hohl HR. The ultrastructure of phycobiont and mycobiont in two species of Usnea. Can J Bot. 1968;46(3):241–5.
Article
Google Scholar
Malachowski JA, Baker KK, Hooper GR. Anatomy and algal-fungal interactions in the lichen Usnea cavernosa. J Phycol. 1980;16(3):346–54.
Article
Google Scholar
Honegger R. Functional aspects of the lichen symbiosis. Annu Rev Plant Biol. 1991;42(1):553–78.
Article
CAS
Google Scholar
Dyer PS. Hydrophobins in the lichen symbiosis. New Phytol. 2002;154(1):1–4.
Article
Google Scholar
Nascimento AS, Muniz JRC, Aparício R, Golubev AM, Polikarpov I. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme. FEBS J. 2014;281(18):4165–78.
Article
CAS
PubMed
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013;42(D1):D490–D5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahmadjian V. The Photobiont (Photosynthetic Symbiont). The Lichen Symbiosis. New York: Wiley; 1993. p. 30–52.
Google Scholar
Chapman RL. Ultrastructural investigation on the foliicolous pyrenocarpous lichen Strigula elegans (Fée) Müll. Arg Phycol. 1976;15(2):191–6.
Article
Google Scholar
Meier JL, Chapman RL. Ultrastructure of the lichen Coenogonium interplexum Nyl. Am J Bot. 1983;70(3):400–7.
Article
Google Scholar
Honegger R, Haisch A. Immunocytochemical location of the (1→ 3)(1→ 4)-β-glucan lichenin in the lichen-forming ascomycete Cetraria islandica (Icelandic moss). New Phytol. 2001;150(3):739–46.
Article
CAS
Google Scholar
Trembley ML, Ringli C, Honegger R. Hydrophobins DGH1, DGH2, and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genet Biol. 2002;35(3):247–59.
Article
CAS
PubMed
Google Scholar
Scherrer S, Haisch A, Honegger R. Characterization and expression of XPH1, the hydrophobin gene of the lichen-forming ascomycete Xanthoria parietina. New Phytol. 2002;154(1):175–84.
Article
CAS
Google Scholar
Trembley ML, Ringli C, Honegger R. Differential expression of hydrophobins DGH1, DGH2 and DGH3 and immunolocalization of DGH1 in strata of the lichenized basidiocarp of Dictyonema glabratum. New Phytol. 2002;154(1):185–95.
Article
CAS
Google Scholar
Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E. Raft-like membrane domains in pathogenic microorganisms. Curr Topics Membr. 2015;75:233–68.
Article
CAS
Google Scholar
Guimarães LL, Toledo MS, Ferreira FA, Straus AH, Takahashi HK. Structural diversity and biological significance of glycosphingolipids in pathogenic and opportunistic fungi. Front Cell Infect Microbiol. 2014;4:138.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bapaume L, Reinhardt D. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. Front Plant Sci. 2012;3:223.
Article
PubMed
PubMed Central
Google Scholar
Lefebvre FA, Lécuyer E. Small luggage for a long journey: transfer of vesicle-enclosed small RNA in interspecies communication. Front Microbiol. 2017;8:377.
Article
PubMed
PubMed Central
Google Scholar
Roth R, Hillmer S, Funaya C, Chiapello M, Schumacher K, Presti LL, et al. Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules. Nat Plants. 2019;5(2):204.
Article
CAS
PubMed
Google Scholar
Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13(10):620.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Toledo MS, Szwarc P, Goldenberg S, Alves LR. Extracellular Vesicles in Fungi: Composition and Functions; 2018.
Google Scholar
Richardson DHS, Smith DC. Lichen physiology. IX. Carbohydrate movement from the Trebouxia Symbiont of Xanthoria aureola to the fungus. New Phytol. 1968;67(1):61–8.
Article
CAS
Google Scholar
Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A. 2005;102(8):3141–6.
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta Bioenerg. 2007;1767(6):414–21.
Article
CAS
Google Scholar
Mulo P, Sakurai I, Aro EM. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta Bioenerg. 1817;2012:247–57.
Google Scholar
Yoshino K, Yamamoto K, Hara K, Sonoda M, Yamamoto Y, Sakamoto K. The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota. Fungal Biol. 2019;123(4):318–29.
Article
CAS
PubMed
Google Scholar
Johansson O, Olofsson J, Giesler R, Palmqvist K. Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytol. 2011;191(3):795–805.
Article
CAS
PubMed
Google Scholar
Palmqvist K, Franklin O, Näsholm T. Symbiosis constraints: strong mycobiont control limits nutrient response in lichens. Ecol Evol. 2017;7(18):7420–33.
Article
PubMed
PubMed Central
Google Scholar
Makkonen S, Hurri RS, Hyvärinen M. Differential responses of lichen symbionts to enhanced nitrogen and phosphorus availability: an experiment with Cladina stellaris. Ann Bot. 2007;99(5):877–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant. 2017;10(9):1147–58.
Article
CAS
PubMed
Google Scholar
Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 2005;10(1):22–9.
Article
CAS
PubMed
Google Scholar
Ichimura T. Editor sexual cell division and conjugation-papilla formation in sexual reproduction of Closterium strigosum. International symposium on seaweed research, 7th, Sapporo; 1971. Tokyo: University of Tokyo Press; 1971.
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Gene Prediction. 1962;2019:227–45.
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dainat J. AGAT: Another Gff Analysis Toolkit to handle annotations in any GTF/GFF format. (Version v0.4.0). Zenodo. doi: https://doi.org/10.5281/zenodo.3552717. 2020.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Article
CAS
PubMed
Google Scholar
Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics. 2008;9:321–32.
Article
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Alexa A, Rahnenfuhrer Jö. topGO: Enrichment Analysis for Gene Ontology. R package version 2.40.0. 2020.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar