Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993, 362: 59-62. 10.1038/362059a0.
Article
CAS
PubMed
Google Scholar
Chio A, Benzi G, Dossena M, Mutani R, Mora G: Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005, 128: 472-476. 10.1093/brain/awh373.
Article
PubMed
Google Scholar
Kihira T, Kanno S, Miwa H, Okamoto K, Kondo T: The role of exogenous risk factors in amyotrophic lateral sclerosis in Wakayama, Japan. Amyotroph Lateral Scler. 2007, 8: 150-156. 10.1080/17482960601179407.
Article
PubMed
Google Scholar
Pasinelli P, Brown RH: Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006, 7: 710-723. 10.1038/nrn1971.
Article
CAS
PubMed
Google Scholar
Valenti M, Pontieri FE, Conti F, Altobelli E, Manzoni T, Frati L: Amyotrophic lateral sclerosis and sports: a case-control study. Eur J Neurol. 2005, 12: 223-225. 10.1111/j.1468-1331.2004.00978.x.
Article
CAS
PubMed
Google Scholar
Malaspina A, Jokic N, Huang WL, Priestley JV: Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression. BMC Genomics. 2008, 9: 500-10.1186/1471-2164-9-500.
Article
PubMed Central
PubMed
Google Scholar
Dangond F, Hwang D, Camelo S, Pasinelli P, Frosch MP, Stephanopoulos G, Stephanopoulos G, Brown RH, Gullans SR: Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. Physiol Genomics. 2004, 16: 229-239.
Article
CAS
PubMed
Google Scholar
De BA, Knoblach SM, Di GS, Fan C, Molon A, Hoffman EP, Faden AI: Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity. Physiol Genomics. 2005, 22: 368-381. 10.1152/physiolgenomics.00081.2005.
Article
Google Scholar
Grossman SD, Rosenberg LJ, Wrathall JR: Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol. 2001, 168: 273-282. 10.1006/exnr.2001.7628.
Article
CAS
PubMed
Google Scholar
Kiernan MC, Bostock H: Effects of membrane polarization and ischaemia on the excitability properties of human motor axons. Brain. 2000, 2542-2551. 10.1093/brain/123.12.2542. 123 Pt 12
Malaspina A, Kaushik N, de BJ: Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem. 2001, 77: 132-145. 10.1046/j.1471-4159.2001.t01-1-00231.x.
Article
CAS
PubMed
Google Scholar
McEwen ML, Springer JE: A mapping study of caspase-3 activation following acute spinal cord contusion in rats. J Histochem Cytochem. 2005, 53: 809-819. 10.1369/jhc.4A6467.2005.
Article
CAS
PubMed
Google Scholar
Millecamps S, Robertson J, Lariviere R, Mallet J, Julien JP: Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin. J Neurochem. 2006, 98: 926-938. 10.1111/j.1471-4159.2006.03932.x.
Article
CAS
PubMed
Google Scholar
Vucic S, Kiernan MC: Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain. 2006, 129: 2436-2446. 10.1093/brain/awl172.
Article
PubMed
Google Scholar
Al-Chalabi A, Andersen PM, Nilsson P, Chioza B, Andersson JL, Russ C, Shaw CE, Powell JF, Leigh PN: Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet. 1999, 8: 157-164. 10.1093/hmg/8.2.157.
Article
CAS
PubMed
Google Scholar
Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H: Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology. 2006, 66: 852-856. 10.1212/01.wnl.0000203120.85850.54.
Article
CAS
PubMed
Google Scholar
Sharp PS, Dick JR, Greensmith L: The effect of peripheral nerve injury on disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neuroscience. 2005, 130: 897-910. 10.1016/j.neuroscience.2004.09.069.
Article
CAS
PubMed
Google Scholar
Farooque M, Zhang Y, Holtz A, Olsson Y: Exudation of fibronectin and albumin after spinal cord injury in rats. Acta Neuropathol. 1992, 84: 613-620. 10.1007/BF00227738.
Article
CAS
PubMed
Google Scholar
Nystrom B, Berglund JE, Bergquist E: Methodological analysis of an experimental spinal cord compression model in the rat. Acta Neurol Scand. 1988, 78: 460-466. 10.1111/j.1600-0404.1988.tb03688.x.
Article
CAS
PubMed
Google Scholar
Basso DM, Beattie MS, Bresnahan JC: Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol. 1996, 139: 244-256. 10.1006/exnr.1996.0098.
Article
CAS
PubMed
Google Scholar
Zeeberg BR, Qin H, Narasimhan S, Sunshine M, Cao H, Kane DW, Reimers M, Stephens RM, Bryant D, Burt SK, Elnekave E, Hari DM, Wynn TA, Cunningham-Rundles C, Stewart DM, Nelson D, Weinstein JN: High-Throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID). BMC Bioinformatics. 2005, 6: 168-10.1186/1471-2105-6-168.
Article
PubMed Central
PubMed
Google Scholar
Di GS, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI: Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol. 2003, 53: 454-468. 10.1002/ana.10472.
Article
Google Scholar
Sifringer M, Stefovska V, Zentner I, Hansen B, Stepulak A, Knaute C, Marzahn J, Ikonomidou C: The role of matrix metalloproteinases in infant traumatic brain injury. Neurobiol Dis. 2007, 25: 526-535. 10.1016/j.nbd.2006.10.019.
Article
CAS
PubMed
Google Scholar
Fitzpatrick MO, Dewar D, Teasdale GM, Graham DI: The neuronal cytoskeleton in acute brain injury. Br J Neurosurg. 1998, 12: 313-317. 10.1080/02688699844808.
Article
CAS
PubMed
Google Scholar
Gobbel GT, Bonfield C, Carson-Walter EB, Adelson PD: Diffuse alterations in synaptic protein expression following focal traumatic brain injury in the immature rat. Childs Nerv Syst. 2007, 23: 1171-1179. 10.1007/s00381-007-0345-2.
Article
CAS
PubMed
Google Scholar
Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M: Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA. 2007, 104: 10655-10660. 10.1073/pnas.0610811104.
Article
CAS
PubMed Central
PubMed
Google Scholar
Starkey ML, Davies M, Yip PK, Carter LM, Wong DJ, McMahon SB, Bradbury EJ: Expression of the regeneration-associated protein SPRR1A in primary sensory neurons and spinal cord of the adult mouse following peripheral and central injury. J Comp Neurol. 2009, 513: 51-68. 10.1002/cne.21944.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gonzalez SL, Saravia F, Gonzalez Deniselle MC, Lima AE, De Nicola AF: Glucocorticoid regulation of motoneuronal parameters in rats with spinal cord injury. Cell Mol Neurobiol. 1999, 19: 597-611. 10.1023/A:1006980301382.
Article
CAS
PubMed
Google Scholar
Holtz A, Nystrom B, Gerdin B, Olsson Y: Neuropathological changes and neurological function after spinal cord compression in the rat. J Neurotrauma. 1990, 7: 155-167. 10.1089/neu.1990.7.155.
Article
CAS
PubMed
Google Scholar
Zhang Y, Hillered L, Olsson Y, Holtz A: Time course of energy perturbation after compression trauma to the spinal cord: an experimental study in the rat using microdialysis. Surg Neurol. 1993, 39: 297-304. 10.1016/0090-3019(93)90009-P.
Article
CAS
PubMed
Google Scholar
Goldstein JC, Munoz-Pinedo C, Ricci JE, Adams SR, Kelekar A, Schuler M, Tsien RY, Green DR: Cytochrome c is released in a single step during apoptosis. Cell Death Differ. 2005, 12: 453-462. 10.1038/sj.cdd.4401596.
Article
CAS
PubMed
Google Scholar
Graf M, Ecker D, Horowski R, Kramer B, Riederer P, Gerlach M, Hager C, Ludolph AC, Becker G, Osterhage J, Jost WH, Schrank B, Stein C, Kostopulos P, Lubik S, Wekwerth K, Dengler R, Troeger M, Wuerz A, Hoge A, Schrader C, Schimke N, Krampfl K, Petri S, Zierz S, Eger K, Neudecker S, Traufeller K, Sievert M, Neundorfer B, Hecht M: High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study. J Neural Transm. 2005, 112: 649-660. 10.1007/s00702-004-0220-1.
Article
CAS
PubMed
Google Scholar
Halliwell B: Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging. 2001, 18: 685-716. 10.2165/00002512-200118090-00004.
Article
CAS
PubMed
Google Scholar
Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, Meininger V: Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology. 2008, 70: 1004-1009. 10.1212/01.wnl.0000285080.70324.27.
Article
CAS
PubMed
Google Scholar
Corcoran J, So PL, Maden M: Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J Cell Sci. 2002, 115: 4735-4741. 10.1242/jcs.00169.
Article
CAS
PubMed
Google Scholar
Jokic N, Ling YY, Ward RE, Michael-Titus AT, Priestley JV, Malaspina A: Retinoid receptors in chronic degeneration of the spinal cord: observations in a rat model of amyotrophic lateral sclerosis. J Neurochem. 2007, 103: 1821-1833. 10.1111/j.1471-4159.2007.04893.x.
Article
CAS
PubMed
Google Scholar
Malaspina A, Turkheimer F: A review of the functional role and of the expression profile of retinoid signaling and of nuclear receptors in human spinal cord. Brain Res Bull. 2007, 71: 437-446. 10.1016/j.brainresbull.2006.10.032.
Article
CAS
PubMed
Google Scholar
Malaspina A, Michael-Titus AT: Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration?. J Neurochem. 2008, 104: 584-595.
CAS
PubMed
Google Scholar
Shojo H, Kibayashi K: Changes in localization of synaptophysin following fluid percussion injury in the rat brain. Brain Res. 2006, 1078: 198-211. 10.1016/j.brainres.2006.01.063.
Article
CAS
PubMed
Google Scholar
Garcia ML, Cleveland DW: Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol. 2001, 13: 41-48. 10.1016/S0955-0674(00)00172-1.
Article
CAS
PubMed
Google Scholar
Suzuki M, Klein S, Wetzel EA, Meyer M, McHugh J, Tork C, Hayes A, Svendsen CN: Acute glial activation by stab injuries does not lead to overt damage or motor neuron degeneration in the G93A mutant SOD1 rat model of amyotrophic lateral sclerosis. Exp Neurol. 2010, 221: 346-352. 10.1016/j.expneurol.2009.12.004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zang DW, Cheema SS: Degeneration of corticospinal and bulbospinal systems in the superoxide dismutase 1(G93A G1H) transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett. 2002, 332: 99-102. 10.1016/S0304-3940(02)00944-8.
Article
CAS
PubMed
Google Scholar
Feeney SJ, McKelvie PA, Austin L, Jean-Francois MJ, Kapsa R, Tombs SM, Byrne E: Presymptomatic motor neuron loss and reactive astrocytosis in the SOD1 mouse model of amyotrophic lateral sclerosis. Muscle Nerve. 2001, 24: 1510-1519. 10.1002/mus.1176.
Article
CAS
PubMed
Google Scholar
Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de LA, Robinson KM, Mason RP, Beckman JS, Barbeito L, Radi R: Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci. 2008, 28: 4115-4122. 10.1523/JNEUROSCI.5308-07.2008.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS, Rothstein JD, Maragakis NJ: Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci. 2008, 11: 1294-1301. 10.1038/nn.2210.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lepore AC, Tolmie C, O'Donnell J, Wright MC, Dejea C, Rauck B, Hoke A, Ignagni AR, Onders RP, Maragakis NJ: Peripheral hyperstimulation alters site of disease onset and course in SOD1 rats. Neurobiol Dis. 2010, 39: 252-264. 10.1016/j.nbd.2010.03.021.
Article
PubMed Central
PubMed
Google Scholar
Malaspina A, Ngoh SF, Ward RE, Hall JC, Tai FW, Yip PK, Jones C, Jokic N, Averill SA, Michael-Titus AT, Priestley JV: Activation transcription factor-3 activation and the development of spinal cord degeneration in a rat model of amyotrophic lateral sclerosis. Neuroscience. 2010, 169: 812-827. 10.1016/j.neuroscience.2010.04.053.
Article
CAS
PubMed
Google Scholar
Woodruff TM, Costantini KJ, Crane JW, Atkin JD, Monk PN, Taylor SM, Noakes PG: The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J Immunol. 2008, 181: 8727-8734.
Article
CAS
PubMed
Google Scholar
Nagai M, Aoki M, Miyoshi I, Kato M, Pasinelli P, Kasai N, Brown RH, Itoyama Y: Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J Neurosci. 2001, 21: 9246-9254.
CAS
PubMed
Google Scholar
Sugawara T, Noshita N, Lewen A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, Chan PH: Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci. 2002, 22: 209-217.
CAS
PubMed
Google Scholar
Hahn CM, Kleinholz H, Koester MP, Grieser S, Thelen K, Pollerberg GE: Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization. Neuroscience. 2005, 134: 449-465. 10.1016/j.neuroscience.2005.04.020.
Article
CAS
PubMed
Google Scholar
Huang WL, King VR, Curran OE, Dyall SC, Ward RE, Lal N, Priestley JV, Michael-Titus AT: A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain. 2007, 130: 3004-3019. 10.1093/brain/awm223.
Article
CAS
PubMed
Google Scholar
Debus E, Weber K, Osborn M: Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation. 1983, 25: 193-203. 10.1111/j.1432-0436.1984.tb01355.x.
Article
CAS
PubMed
Google Scholar
Ruscheweyh R, Forsthuber L, Schoffnegger D, Sandkuhler J: Modification of classical neurochemical markers in identified primary afferent neurons with Abeta-, Adelta-, and C-fibers after chronic constriction injury in mice. J Comp Neurol. 2007, 502: 325-336. 10.1002/cne.21311.
Article
CAS
PubMed
Google Scholar
Saganova K, Orendacova J, Cizkova D, Vanicky I: Limited minocycline neuroprotection after balloon-compression spinal cord injury in the rat. Neurosci Lett. 2008, 433: 246-249. 10.1016/j.neulet.2008.01.041.
Article
CAS
PubMed
Google Scholar
Zelano J, Berg A, Thams S, Hailer NP, Cullheim S: SynCAM1 expression correlates with restoration of central synapses on spinal motoneurons after two different models of peripheral nerve injury. J Comp Neurol. 2009, 517: 670-682. 10.1002/cne.22186.
Article
CAS
PubMed
Google Scholar
Yip PK, Wong LF, Sears TA, Yanez-Munoz RJ, McMahon SB: Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol. 2010, 8: e1000399-10.1371/journal.pbio.1000399.
Article
PubMed Central
PubMed
Google Scholar