Boyer JS: Plant productivity and environment. Science. 1982, 218: 443-448. 10.1126/science.218.4571.443.
CAS
PubMed
Google Scholar
Burke EJ, Brown SJ, Christidis N: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J Hydrometeorology. 2006, 7: 1113-1125. 10.1175/JHM544.1.
Google Scholar
Meehl GA, Washington WM, Santer BD, Collins WD, Arblaster JM, Hu A, Lawrence DM, Teng H, Buja LE, Strand WG: Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Climate. 2006, 19: 2597-2616. 10.1175/JCLI3746.1.
Google Scholar
Century K, Reuber TL, Ratcliffe OJ: Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol. 2008, 147: 20-29. 10.1104/pp.108.117887.
CAS
PubMed Central
PubMed
Google Scholar
Salmeron J, Herrera-Estrella LR: Plant biotechnology: Fast-forward genomics for improved crop production. Curr Opin Plant Biol. 2006, 9: 177-179. 10.1016/j.pbi.2006.01.018.
Google Scholar
Ding Z, Li S, An X, Liu X, Qin H, Wang D: Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics. 2009, 36: 17-29. 10.1016/S1673-8527(09)60003-5.
CAS
PubMed
Google Scholar
Kang JY, Choi HI, Im MY, Kim SY: Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell. 2002, 14: 343-357. 10.1105/tpc.010362.
CAS
PubMed Central
PubMed
Google Scholar
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998, 10: 1391-1406. 10.1105/tpc.10.8.1391.
CAS
PubMed Central
PubMed
Google Scholar
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell. 2006, 18: 1292-1309. 10.1105/tpc.105.035881.
CAS
PubMed Central
PubMed
Google Scholar
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA. 2006, 103: 12987-12992. 10.1073/pnas.0604882103.
CAS
PubMed Central
PubMed
Google Scholar
Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK: Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005, 138: 341-351. 10.1104/pp.104.059147.
CAS
PubMed Central
PubMed
Google Scholar
Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P: OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol. 2005, 138: 2087-2096. 10.1104/pp.105.063115.
CAS
PubMed Central
PubMed
Google Scholar
Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG: Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA. 2007, 104: 16450-16455. 10.1073/pnas.0707193104.
CAS
PubMed Central
PubMed
Google Scholar
Winicov I, Bastola DR: Transgenic overexpression of the transcription factor alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol. 1999, 120: 473-480. 10.1104/pp.120.2.473.
CAS
PubMed Central
PubMed
Google Scholar
Miki B, Abdeen A, Manabe Y, MacDonald P: Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnol J. 2009, 7: 211-218. 10.1111/j.1467-7652.2009.00400.x.
CAS
PubMed
Google Scholar
Eulgem T, Rushton PJ, Robatzek S, Somssich IE: The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5: 199-206. 10.1016/S1360-1385(00)01600-9.
CAS
PubMed
Google Scholar
Rijpkema AS, Gerats T, Vandenbussche M: Evolutionary complexity of MADS complexes. Curr Opin Plant Biol. 2007, 10: 32-38. 10.1016/j.pbi.2006.11.010.
CAS
PubMed
Google Scholar
Abdeen A, Miki B: The pleiotropic effects of the bar gene and glufosinate on the Arabidopsis transcriptome. Plant Biotechnol J. 2009, 7: 266-282. 10.1111/j.1467-7652.2008.00398.x.
CAS
PubMed
Google Scholar
Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH: A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J. 2006, 4: 381-392. 10.1111/j.1467-7652.2006.00197.x.
CAS
PubMed
Google Scholar
Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR: Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J. 2006, 4: 369-380. 10.1111/j.1467-7652.2006.00193.x.
CAS
PubMed
Google Scholar
Albo AG, Mila S, Digilio G, Motto M, Aime S, Corpillo D: Proteomic analysis of a genetically modified maize flour carrying CRY1AB gene and comparison to the corresponding wild-type. Maydica. 2007, 52: 443-455.
Google Scholar
Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB: Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci USA. 2005, 102: 14458-14462. 10.1073/pnas.0503955102.
CAS
PubMed Central
PubMed
Google Scholar
Cheng KC, Beaulieu J, Iquira E, Belzile FJ, Fortin MG, Strömvik MV: Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. J Agric Food Chem. 2008, 56: 3057-3067. 10.1021/jf073505i.
CAS
PubMed
Google Scholar
Corpillo D, Gardini G, Vaira AM, Basso M, Aime S, Accotto GP, Fasano M: Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: The case of a virus-resistant tomato. Proteomics. 2004, 4: 193-200. 10.1002/pmic.200300540.
CAS
PubMed
Google Scholar
El Ouakfaoui S, Miki B: The stability of the Arabidopsis transcriptome in transgenic plants expressing the marker genes nptII and uidA. Plant J. 2005, 41: 791-800. 10.1111/j.1365-313X.2005.02350.x.
CAS
PubMed
Google Scholar
Gregersen PL, Brinch-Pedersen H, Holm PB: A microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res. 2005, 14: 887-905. 10.1007/s11248-005-1526-y.
CAS
PubMed
Google Scholar
Lehesranta SJ, Davies HV, Shepherd LVT, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Kärenlampi SO: Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol. 2005, 138: 1690-1699. 10.1104/pp.105.060152.
CAS
PubMed Central
PubMed
Google Scholar
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F: bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002, 7: 106-111. 10.1016/S1360-1385(01)02223-3.
CAS
PubMed
Google Scholar
Choi H, Hong J, Ha J, Kang J, Kim SY: ABFs, a family of ABA-responsive element binding factors. J Biol Chem. 2000, 275: 1723-1730. 10.1074/jbc.275.3.1723.
CAS
PubMed
Google Scholar
Shinozaki K, Yamaguchi-Shinozaki K: Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007, 58: 221-227. 10.1093/jxb/erl164.
CAS
PubMed
Google Scholar
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA. 2000, 97: 11632-11637. 10.1073/pnas.190309197.
CAS
PubMed Central
PubMed
Google Scholar
Kim JB, Kang JY, Kim SY: Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J. 2004, 2: 459-466. 10.1111/j.1467-7652.2004.00090.x.
CAS
PubMed
Google Scholar
Kim S, Kang JY, Cho DI, Park JH, Kim SY: ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 2004, 40: 75-87. 10.1111/j.1365-313X.2004.02192.x.
CAS
PubMed
Google Scholar
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31: 279-292. 10.1046/j.1365-313X.2002.01359.x.
CAS
PubMed
Google Scholar
Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell. 2001, 13: 61-72. 10.1105/tpc.13.1.61.
CAS
PubMed Central
PubMed
Google Scholar
Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M: Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol. 2008, 49: 1135-1149. 10.1093/pcp/pcn101.
CAS
PubMed
Google Scholar
Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K: Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol. 2000, 42: 657-665. 10.1023/A:1006321900483.
CAS
PubMed
Google Scholar
Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 2002, 130: 639-648. 10.1104/pp.006478.
CAS
PubMed Central
PubMed
Google Scholar
Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003, 15: 63-78. 10.1105/tpc.006130.
CAS
PubMed Central
PubMed
Google Scholar
Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K: Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell. 1997, 9: 1859-1868. 10.1105/tpc.9.10.1859.
CAS
PubMed Central
PubMed
Google Scholar
Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K: An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell. 1993, 5: 1529-1539. 10.1105/tpc.5.11.1529.
CAS
PubMed Central
PubMed
Google Scholar
Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004, 16: 2481-2498. 10.1105/tpc.104.022699.
CAS
PubMed Central
PubMed
Google Scholar
Tran LSP, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K: Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J. 2006, 49: 46-63. 10.1111/j.1365-313X.2006.02932.x.
Google Scholar
Gilbertson L: Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol. 2003, 21: 550-555. 10.1016/j.tibtech.2003.09.011.
CAS
PubMed
Google Scholar
De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A: Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. Plant Physiol. 2007, 145: 1171-1182. 10.1104/pp.107.104067.
CAS
PubMed Central
PubMed
Google Scholar
Hoa TTC, Bong BB, Huq E, Hodges TK: Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet. 2002, 104: 518-525. 10.1007/s001220100748.
CAS
PubMed
Google Scholar
Osborne BI, Wirtz U, Baker B: A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J. 1995, 7: 687-701. 10.1046/j.1365-313X.1995.7040687.x.
CAS
PubMed
Google Scholar
Russell SH, Hoopes JL, Odell JT: Directed excision of a transgene from the plant genome. Mol Genet Genet. 1992, 234: 49-59.
CAS
Google Scholar
Coppoolse ER, de Vroomen MJ, Roelofs D, Smit J, van Gennip F, Hersmus BJM, Nijkamp HJJ, van Haaren MJJ: Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol Biol. 2003, 51: 263-279. 10.1023/A:1021174726070.
CAS
PubMed
Google Scholar
Que Q, Wang HY, Jorgensen RA: Distinct patterns of pigment suppression are produced by allelic sense and antisense chalcone synthase transgenes in petunia flowers. Plant J. 1998, 13: 401-409. 10.1046/j.1365-313X.1998.00038.x.
CAS
Google Scholar
Corneille S, Lutz K, Svab Z, Maliga P: Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 2001, 27: 171-178. 10.1046/j.1365-313x.2001.01068.x.
CAS
PubMed
Google Scholar
Corneille S, Lutz KA, Azhagiri AK, Maliga P: Identification of functional lox sites in the plastid genome. Plant J. 2003, 35: 753-762. 10.1046/j.1365-313X.2003.01845.x.
CAS
PubMed
Google Scholar
Hajdukiewicz PTJ, Gilbertson L, Staub JM: Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J. 2001, 27: 161-170. 10.1046/j.1365-313x.2001.01067.x.
CAS
PubMed
Google Scholar
Heidmann D, Lehner CF: Reduction of Cre recombinase toxicity in proliferating Drosophila cells by estrogen-dependent activity regulation. Dev Genes Evol. 2001, 211: 458-465. 10.1007/s004270100167.
CAS
PubMed
Google Scholar
Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J: Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci USA. 2001, 98: 9209-9214. 10.1073/pnas.161269798.
CAS
PubMed Central
PubMed
Google Scholar
Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR: Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci USA. 2000, 97: 13702-13707. 10.1073/pnas.240471297.
CAS
PubMed Central
PubMed
Google Scholar
Silver DP, Livingston DM: Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell. 2001, 8: 233-243. 10.1016/S1097-2765(01)00295-7.
CAS
PubMed
Google Scholar
Li J, Brader G, Palva ET: The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. Plant Cell. 2004, 16: 319-331. 10.1105/tpc.016980.
CAS
PubMed Central
PubMed
Google Scholar
Agarwal PK, Agarwal P, Reddy MK, Sopory SK: Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006, 25: 1263-1274. 10.1007/s00299-006-0204-8.
CAS
PubMed
Google Scholar
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol. 1999, 17: 287-291. 10.1038/7036.
CAS
PubMed
Google Scholar
Novillo F, Alonso JM, Ecker JR, Salinas J: CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA. 2004, 101: 3985-3990. 10.1073/pnas.0303029101.
CAS
PubMed Central
PubMed
Google Scholar
Gómez-Porras JL, Riaño-Pachón DM, Dreyer I, Mayer JE, Mueller-Roeber B: Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics. 2007, 8: 260-10.1186/1471-2164-8-260.
PubMed Central
PubMed
Google Scholar
Hugouvieux V, Kwak JM, Schroeder JI: An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell. 2001, 106: 477-487. 10.1016/S0092-8674(01)00460-3.
CAS
PubMed
Google Scholar
Lu C, Fedoroff N: A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell. 2000, 12: 2351-2365. 10.1105/tpc.12.12.2351.
CAS
PubMed Central
PubMed
Google Scholar
Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T: Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J. 2005, 44: 972-984. 10.1111/j.1365-313X.2005.02589.x.
CAS
PubMed
Google Scholar
Papp I, Mur LA, Dalmadi A, Dulai S, Koncz C: A mutation in the Cap Binding Protein 20 gene confers drought tolerance to Arabidopsis. Plant Mol Biol. 2004, 55: 679-686. 10.1007/s11103-004-1680-2.
CAS
PubMed
Google Scholar
Rumeau D, Peltier G, Cournac L: Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ. 2007, 30: 1041-1051. 10.1111/j.1365-3040.2007.01675.x.
CAS
PubMed
Google Scholar
Casano LM, Zapata JM, Martín M, Sabater B: Chlororespiration and poising of cyclic electron transport. Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. J Biol Chem. 2000, 275: 942-948. 10.1074/jbc.275.2.942.
CAS
PubMed
Google Scholar
Grandbastien M-A: Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 1998, 3: 181-187. 10.1016/S1360-1385(98)01232-1.
Google Scholar
Madlung A, Comai L: The effect of stress on genome regulation and structure. Ann Bot. 2004, 94: 481-495. 10.1093/aob/mch172.
CAS
PubMed Central
PubMed
Google Scholar
Sauer B: Identification of cryptic lox sites in the yeast genome by selection for Cre-mediated chromosome translocations that confer multiple drug resistance. J Mol Biol. 1992, 223: 911-928. 10.1016/0022-2836(92)90252-F.
CAS
PubMed
Google Scholar
Thyagarajan B, Guimarães MJ, Groth AC, Calos MP: Mammalian genomes contain active recombinase recognition sites. Gene. 2000, 244: 47-54. 10.1016/S0378-1119(00)00008-1.
CAS
PubMed
Google Scholar
Drescher A, Ruf S, Calsa T, Carrer H, Bock R: The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 2000, 22: 97-104. 10.1046/j.1365-313x.2000.00722.x.
CAS
PubMed
Google Scholar
Shikanai T, Shimizu K, Ueda K, Nishimura Y, Kuroiwa T, Hashimoto T: The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco. Plant Cell Physiol. 2001, 42: 264-273. 10.1093/pcp/pce031.
CAS
PubMed
Google Scholar
Legen J, Wanner G, Herrmann RG, Small I, Schmitz-Linneweber C: Plastid tRNA genes trnC-GCA and trnN-GUU are essential for plant cell development. Plant J. 2007, 51: 751-762. 10.1111/j.1365-313X.2007.03177.x.
CAS
PubMed
Google Scholar
Bensmihen S, Giraudat J, Parcy F: Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot. 2005, 56: 597-603. 10.1093/jxb/eri050.
CAS
PubMed
Google Scholar
Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K: AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell. 2005, 17: 3470-3488. 10.1105/tpc.105.035659.
CAS
PubMed Central
PubMed
Google Scholar
Lopez-Molina L, Mongrand S, Chua NH: A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA. 2001, 98: 4782-4787. 10.1073/pnas.081594298.
CAS
PubMed Central
PubMed
Google Scholar
Chae MJ, Lee JS, Nam MH, Cho K, Hong JY, Yi SA, Suh SC, Yoon IS: A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol Biol. 2007, 63: 151-169. 10.1007/s11103-006-9079-x.
CAS
PubMed
Google Scholar
Fujii H, Verslues PE, Zhu JK: Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell. 2007, 19: 485-494. 10.1105/tpc.106.048538.
CAS
PubMed Central
PubMed
Google Scholar
Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA. 2006, 103: 1988-1993. 10.1073/pnas.0505667103.
CAS
PubMed Central
PubMed
Google Scholar
Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK: The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol. 2002, 130: 837-846. 10.1104/pp.001354.
PubMed Central
PubMed
Google Scholar
Kagaya Y, Hobo T, Murata M, Ban A, Hattori T: Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell. 2002, 14: 3177-3189. 10.1105/tpc.005272.
CAS
PubMed Central
PubMed
Google Scholar
Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T: Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J. 2005, 44: 939-949. 10.1111/j.1365-313X.2005.02583.x.
CAS
PubMed
Google Scholar
Choi H, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY: Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol. 2005, 139: 1750-1761. 10.1104/pp.105.069757.
CAS
PubMed Central
PubMed
Google Scholar
Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ: Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell. 2007, 19: 3019-3036. 10.1105/tpc.107.050666.
CAS
PubMed Central
PubMed
Google Scholar
Kim S, Choi H, Ryu HJ, Park JH, Kim MD, Kim SY: ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component. Plant Physiol. 2004, 136: 3639-3648. 10.1104/pp.104.049189.
CAS
PubMed Central
PubMed
Google Scholar
Finkelstein R, Gampala SSL, Lynch TJ, Thomas TL, Rock CD: Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol Biol. 2005, 59: 253-267. 10.1007/s11103-005-8767-2.
CAS
PubMed
Google Scholar
Nakamura S, Lynch TJ, Finkelstein RR: Physical interactions between ABA response loci of Arabidopsis. Plant J. 2001, 26: 627-635. 10.1046/j.1365-313x.2001.01069.x.
CAS
PubMed
Google Scholar
Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K: Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 2003, 34: 137-148. 10.1046/j.1365-313X.2003.01708.x.
CAS
PubMed
Google Scholar
Kim SY, Ma J, Perret P, Li Z, Thomas TL: Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol. 2002, 130: 688-697. 10.1104/pp.003566.
CAS
PubMed Central
PubMed
Google Scholar
Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI: Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods. 2008, 4: 6-10.1186/1746-4811-4-6.
PubMed Central
PubMed
Google Scholar
Kuhn JM, Schroeder JI: Impacts of altered RNA metabolism on abscisic acid signaling. Curr Opin Plant Biol. 2003, 6: 463-469. 10.1016/S1369-5266(03)00084-0.
CAS
PubMed
Google Scholar
Lee B, Kapoor A, Zhu J, Zhu JK: STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell. 2006, 18: 1736-1749. 10.1105/tpc.106.042184.
CAS
PubMed Central
PubMed
Google Scholar
Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK: Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell. 2001, 1: 771-781. 10.1016/S1534-5807(01)00087-9.
CAS
PubMed
Google Scholar
Koiwa H, Barb AW, Xiong L, Li F, McCully MG, Lee BH, Sokolchik I, Zhu J, Gong Z, Reddy M: C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci USA. 2002, 99: 10893-10898. 10.1073/pnas.112276199.
CAS
PubMed Central
PubMed
Google Scholar
Xiong L, Lee H, Ishitani M, Tanaka Y, Stevenson B, Koiwa H, Bressan RA, Hasegawa PM, Zhu JK: Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci USA. 2002, 99: 10899-10904. 10.1073/pnas.162111599.
CAS
PubMed Central
PubMed
Google Scholar
Perera IY, Hung CY, Moore CD, Stevenson-Paulik J, Boss WF: Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell. 2008, 20: 2876-2893. 10.1105/tpc.108.061374.
CAS
PubMed Central
PubMed
Google Scholar
Atkin OK, Macherel D: The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot. 2009, 103: 581-597. 10.1093/aob/mcn094.
CAS
PubMed Central
PubMed
Google Scholar
Chaves MM, Flexas J, Pinheiro C: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009, 103: 551-560. 10.1093/aob/mcn125.
CAS
PubMed Central
PubMed
Google Scholar
Carvalho IS, Chaves MM, Pinto Ricardo C: Influence of Water Stress on the Chemical Composition of Seeds of Two Lupins (Lupinus albus and Lupinus mutabilis). J Agron Crop Sci. 2005, 191: 95-98. 10.1111/j.1439-037X.2004.00128.x.
Google Scholar
Champolivier L, Merrien A: Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agron. 1996, 5: 153-160. 10.1016/S1161-0301(96)02004-7.
Google Scholar
Dornbos DL, Mullen RE: Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J Am Oil Chem Soc. 1992, 69: 228-231. 10.1007/BF02635891.
CAS
Google Scholar
Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT: Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot. 2004, 94: 345-351. 10.1093/aob/mch150.
CAS
PubMed Central
PubMed
Google Scholar
Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, Thage JH: Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Res. 1996, 47: 93-105. 10.1016/0378-4290(96)00026-3.
Google Scholar
Rotundo JL, Westgate ME: Meta-analysis of environmental effects on soybean seed composition. Field Crops Res. 2009, 110: 147-156. 10.1016/j.fcr.2008.07.012.
Google Scholar
Dakhma WS, Zarrouk M, Cherif A: Effects of drought-stress on lipids in rape leaves. Phytochemistry. 1995, 40: 1383-1386. 10.1016/0031-9422(95)00459-K.
CAS
Google Scholar
Bejarano L, Mignolet E, Devaux A, Espinola N, Carrasco E, Larondelle Y: Glycoalkaloids in potato tubers: the effect of variety and drought stress on the α-solanine and α-chaconine contents of potatoes. J Sci Food Agric. 2000, 80: 2096-2100. 10.1002/1097-0010(200011)80:14<2096::AID-JSFA757>3.0.CO;2-6.
CAS
Google Scholar
Finkelstein RR, Lynch TJ: The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell. 2000, 12: 599-610. 10.1105/tpc.12.4.599.
CAS
PubMed Central
PubMed
Google Scholar
Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH: ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 2002, 32: 317-328. 10.1046/j.1365-313X.2002.01430.x.
CAS
PubMed
Google Scholar
Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M: Regulation of Arabidopsis thaliana Em genes: role of ABI5. The Plant Journal. 2002, 30: 373-383. 10.1046/j.1365-313X.2002.01295.x.
CAS
PubMed
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136: 2621-2632. 10.1104/pp.104.046367.
CAS
PubMed Central
PubMed
Google Scholar
Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol. 2006, 60: 51-68. 10.1007/s11103-005-2418-5.
CAS
PubMed
Google Scholar
Brocard IM, Lynch TJ, Finkelstein RR: Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol. 2002, 129: 1533-1543. 10.1104/pp.005793.
CAS
PubMed Central
PubMed
Google Scholar
Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743. 10.1046/j.1365-313x.1998.00343.x.
CAS
PubMed
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003, 4: 249-264. 10.1093/biostatistics/4.2.249.
PubMed
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004, 5: R80-10.1186/gb-2004-5-10-r80.
PubMed Central
PubMed
Google Scholar
Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3: Article 3
Google Scholar