Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, et al: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002, 417: 141-147. 10.1038/417141a.
Article
PubMed
Google Scholar
Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S: Complete genome sequence and comparative analysis of the industrial microoganism Streptomyces avermitilis. Nat Biotechnol. 2003, 21: 526-531. 10.1038/nbt820.
Article
PubMed
Google Scholar
Chang S, Sievert DM, Jefferey C, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrick JT, Pupp GR, Brown WJ, Cardo D, Fridkin SK: Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003, 348: 1342-1347. 10.1056/NEJMoa025025.
Article
PubMed
Google Scholar
Pearson H: 'Superbug' hurdles key drug barrier. Nature. 2002, 418: 469-470.
Article
CAS
PubMed
Google Scholar
Tenover FC, Weigel LM, Appelbaum PC, McDougal LK, Chaitram J, McAllister S, Clark N, Killgore G, O'Hara CM, Jevitt L, Patel JB, Bozdogan B: Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother. 2004, 48: 275-280. 10.1128/AAC.48.1.275-280.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killogore GE, Tenover FC: Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science. 2003, 28: 1567-1571.
Google Scholar
Koteva K, Hong H-J, Wang XD, Nazi I, Hughes D, Naldrett MJ, Buttner MJ, Wright GD: A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nature Chem Biol. 2010, 6: 327-329.
Article
CAS
Google Scholar
Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ: A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007, 130: 797-810. 10.1016/j.cell.2007.06.049.
Article
CAS
PubMed
Google Scholar
McCallum N, Spehar G, Bischoff M, Berger-Bächi B: Strain dependence of the cell wall-damage induced stimulon in Staphylococcus aureus. Biochim Biophys Acta. 2006, 1760: 1475-1481.
Article
CAS
PubMed
Google Scholar
O'Neill AJ, Lindsay JA, Gould K, Hinds J, Chopra I: Transcriptional signature following inhibition of early-stage cell wall biosynthesis in Staphylococcus aureus. Antimicrob Agents Chemother. 2009, 53: 1701-1704. 10.1128/AAC.01309-08.
Article
PubMed
PubMed Central
Google Scholar
Pietiäinen M, François P, Hayyryläinen H-L, Tangomo M, Sass V, Sahl HG, Schrenzel J, Kontinen VP: Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genomics. 2009, 10: 429-443. 10.1186/1471-2164-10-429.
Article
PubMed
PubMed Central
Google Scholar
Provvedi R, Boldrin F, Falciani F, Palù G, Manganelli R: Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology. 2009, 155: 1093-1102. 10.1099/mic.0.024802-0.
Article
CAS
PubMed
Google Scholar
Utaida S, Dunman PM, Murphy ME, Projan SJ, Singh VK, Jayaswal RK, Wilkinson BJ: Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell wall active antibiotics reveals a cell wall-stress stimulon. Microbiology. 2003, 149: 2719-2732. 10.1099/mic.0.26426-0.
Article
CAS
PubMed
Google Scholar
Hutter B, Schaab C, Alktrecht S, Borgmann M, Brunner NA, Freiberg C, Ziegelbauer K, Rock CO, Ivanov I, Loferer H: Prediction of mechanisms of action of antibacterial compounds by gene expression profiling. Antimicrob Agents Chemother. 2004, 48: 2838-2844. 10.1128/AAC.48.8.2838-2844.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT: Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 1991, 30: 10408-10415. 10.1021/bi00107a007.
Article
CAS
PubMed
Google Scholar
van Heijenoort J: Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology. 2001, 11: 25R-36R. 10.1093/glycob/11.3.25R.
Article
CAS
PubMed
Google Scholar
Azevedo EC, Rios EM, Fukushima K, Campos-Takaki GM: Bacitracin production by a new strain of Bacillus subtilis. Extraction, purification and characterization. Appl Biochem Biotechnol. 1993, 42: 1-7. 10.1007/BF02788897.
Article
CAS
PubMed
Google Scholar
Ishihara H, Takoh M, Nishibayashi R, Sato A: Distribution and variation of bacitracin synthetase gene sequences in laboratory stock strains of Bacillus licheniformis. Curr Microbiol. 2002, 45: 18-23. 10.1007/s00284-001-0041-5.
Article
CAS
PubMed
Google Scholar
Hong H-J, Paget MSB, Buttner MJ: A signal transduction system in Streptomyces coelicolor that activated expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol. 2002, 44: 1199-1211. 10.1046/j.1365-2958.2002.02960.x.
Article
CAS
PubMed
Google Scholar
Paget MSB, Chamberlin L, Atrih A, Foster SJ, Buttner MJ: Evidence that the extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol. 1999, 181: 204-211.
CAS
PubMed
PubMed Central
Google Scholar
Hesketh A, Chen WJ, Ryding J, Chang S, Bibb M: The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol. 2007, 8: R161-10.1186/gb-2007-8-8-r161.
Article
PubMed
PubMed Central
Google Scholar
Komatsu M, Takano H, Hiratsuka T, Ishigaki Y, Shimada K, Beppu T, Ueda K: Proteins encoded by the conservon of Streptomyces coelicolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system. Mol Microbiol. 2006, 62: 1534-1546. 10.1111/j.1365-2958.2006.05461.x.
Article
CAS
PubMed
Google Scholar
Chakraburtty R, Bibb J: The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol. 1997, 179: 5854-5861.
CAS
PubMed
PubMed Central
Google Scholar
Bucca G, Laing E, Mersinias V, Allenby N, Hurd D, Holdstock J, Brenner V, Harrison M, Smith CP: Development and application of versatile high density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon. Genome Biol. 2009, 10: R5-10.1186/gb-2009-10-1-r5.
Article
PubMed
PubMed Central
Google Scholar
Lee EJ, Cho YH, Kim HS, Ahn BE, Roe J-H: Regulation of σB by an anti- and an anti-anti-sigma factor in Streptomyces coelicolor in response to osmotic stress. J Bacteriol. 2004, 186: 8490-8498. 10.1128/JB.186.24.8490-8498.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ: Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the σR regulon. Mol Microbiol. 2001, 42: 1007-1020. 10.1046/j.1365-2958.2001.02675.x.
Article
CAS
PubMed
Google Scholar
Bursy J, Pierik AJ, Pica N, Bremer E: Osmotically induced synthesis of the compatible solute hycroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem. 2007, 282: 31147-31155. 10.1074/jbc.M704023200.
Article
CAS
PubMed
Google Scholar
da Costa MS, Santos H, Galinski EA: An overview of the role and diversity of compatible solutes in bacteria and archaea. Adv Biochem Eng Biotechnol. 1998, 61: 117-153.
CAS
PubMed
Google Scholar
Galinski EA, Trüper HG: Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev. 1994, 15: 95-108. 10.1111/j.1574-6976.1994.tb00128.x.
Article
CAS
Google Scholar
García-Estepa R, Argandoña M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C: The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol. 2006, 188: 3774-3784. 10.1128/JB.00136-06.
Article
PubMed
PubMed Central
Google Scholar
Kuhlmann AU, Bremer E: Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol. 2002, 68: 772-783. 10.1128/AEM.68.2.772-783.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhlmann AU, Bursy J, Gimpel S, Hoffmann T, Bremer E: Synthesis of the compatible solute ectoine in Virgibacillus pantothenticus is triggered by high salinity and low growth temperature. Appl Environ Microbiol. 2008, 74: 4560-4563. 10.1128/AEM.00492-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E: Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol. 2008, 74: 7286-7296. 10.1128/AEM.00768-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee E-J, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH: A master regulator σB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol. 2005, 57: 1252-1264. 10.1111/j.1365-2958.2005.04761.x.
Article
CAS
PubMed
Google Scholar
Bugg TDH: Bacterial peptidoglycan biosynthesis and its inhibition. Comprehensive Natural Products Chemistry. Edited by: Meth-Cohn O, Barton D, Nakanishi K. 1999, Elsevier Science
Google Scholar
Foster SJ, Popham DL: Structure and synthesis of cell wall, spore cortex, teichoic acid, S-layer, and capsules. Bacillus subtilis and its relatives: from Genes to Cells. Edited by: Sonenshein L, Losick R, Hoch JA. 2001, American Soceity for Microbiology Press
Google Scholar
Goffin C, Ghuysen JM: Multimodular penicillin-binding proteins: An enigmatic family of orthologs and paralogs. Microbiol Mol Biol Review. 1998, 62: 1079-1093.
CAS
Google Scholar
Ishino F, Matsuhashi M: Peptidoglycan synthetic enzyme activities of highly purified penicillin-binding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochem Biophys Res Commun. 1981, 101: 905-911. 10.1016/0006-291X(81)91835-0.
Article
CAS
PubMed
Google Scholar
McPherson DC, Driks A, Popham DL: Two class A high-molecular weight penicillin-binding proteins of Bacitllus subtilis play redundant roles in sporulation. J Bacteriol. 2001, 183: 6046-6053. 10.1128/JB.183.20.6046-6053.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray T, Popham DL, Pearson CB, Hand AR, Setlow P: Analysis of outgrowth of Bacillus subtilis spores lacking penicillin-binding protein 2a. J Bacteriol. 1998, 180: 6493-6502.
CAS
PubMed
PubMed Central
Google Scholar
Murray T, Popham DL, Setlow P: Bacillus subtilis cells lacking penicillin-binding protein 1 required increased levels of divalent cations for growth. J Bacteriol. 1998, 180: 4555-4563.
CAS
PubMed
PubMed Central
Google Scholar
Ruiz N: Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci. 2008, 105: 15553-15557. 10.1073/pnas.0808352105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong H-J, Hutchings MI, Neu JM, Wright GD, Buttner MJ: Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol. 2004, 52: 1107-1121. 10.1111/j.1365-2958.2004.04032.x.
Article
CAS
PubMed
Google Scholar
Hong H-J, Hutchings MI, Hill L, Buttner MJ: The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem. 2005, 280: 13055-13061.
Article
CAS
PubMed
Google Scholar
Haiser HJ, Yousef MR, Elliot MA: Cell wall hydrolases affect germination, vegetative growth, and sporulation in Streptomyces coelicolor. J Bacteriol. 2009, 191: 6501-6512. 10.1128/JB.00767-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noens EEE, Mersinias V, Traag BA, Smith CP, Koerten HK, van Wezel GP: SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Mol Microbiol. 2005, 58: 929-944. 10.1111/j.1365-2958.2005.04883.x.
Article
CAS
PubMed
Google Scholar
Traag BA, van Wezel GP: The SsgA-like proteins in actinomycetes: small proteins up to a big task. Antonie van Leeuwenh.
Cossart P, Jonquières R: Sortase, a universal target for therapeutic agents against Gram-positive bacteria?. Proc Natl Acad Sci. 2000, 97: 5013-5015. 10.1073/pnas.97.10.5013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boekhorst J, de Been MWHJ, Ckeerebezem M, Siezen RJ: Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol. 2005, 184: 4928-4934.
Article
Google Scholar
Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ: The chaplins: a family of hycrophobic cell-surpface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 2003, 17: 1727-1740. 10.1101/gad.264403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gramajo HC, Takano E, Bibb MJ: Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Mol Microbiol. 1993, 7: 837-845. 10.1111/j.1365-2958.1993.tb01174.x.
Article
CAS
PubMed
Google Scholar
Ryding NJ, Anderson TB, Champness WC: Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol. 2002, 184: 794-805. 10.1128/JB.184.3.794-805.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MM: Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol. 1992, 6: 2797-2804. 10.1111/j.1365-2958.1992.tb01459.x.
Article
CAS
PubMed
Google Scholar
Kang JG, Hahn MY, Ishihama A, Roe JH: Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res. 1997, 25: 2566-2573. 10.1093/nar/25.13.2566.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bibb MJ, Molle V, Buttner MJ: σBldN, an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol. 2002, 182: 4606-4616.
Article
Google Scholar
Gaballa A, Wang T, Ye RW, Helmann JD: Functional analysis of the Bacillus subtilis Zur regulon. J Bacteriol. 2002, 184: 6508-6514. 10.1128/JB.184.23.6508-6514.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patzer SI, Hantke K: The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol. 1998, 28: 1199-1210. 10.1046/j.1365-2958.1998.00883.x.
Article
CAS
PubMed
Google Scholar
Kallifidas D, Pascoe B, Owen GA, Strain-Damerell CM, Hong H-J, Paget MSB: The zinc-responsive regulator Zur controls expression of the Coelibactin gene cluster in Streptomyces coelicolor. J Bacteriol. 2009, 192: 608-611.
Article
PubMed
PubMed Central
Google Scholar
Owen GA, Pascoe B, Kallifidas D, Paget MS: Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and σR. J Bacteriol. 2007, 189: 4078-4086. 10.1128/JB.01901-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin JH, Oh SY, Kim S-J, Roe J-H: The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomcyes coelicolor A3(2). J Bacteriol. 2007, 189: 4070-4077. 10.1128/JB.01851-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navratna V, Nadig S, Sood V, Prasad K, Arakere G, Gopal B: Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance. J Bacteriol. 2010, 192: 134-144. 10.1128/JB.00822-09.
Article
CAS
PubMed
Google Scholar
Arbeloa A, Segal H, Hugonnet JE, Josseaume N, Dubost L, Brouard JP, Gutmann L, Mengin-Lecreulx D, Arthur M: Role of class A penicillin-binding proteins in PBP5-mediated β-lactam resistance in Enterococcus faecalis. J Bacteriol. 2004, 186: 1221-1228. 10.1128/JB.186.5.1221-1228.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
RajBhandary UL, Söll D: Aminoacy-tRNAs, the bacterial cell envelope, and antibiotics. Proc Natl Acad Sci. 2008, 105: 5285-5286. 10.1073/pnas.0801193105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M: Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides in Staphylococcus aureus. Antimicrob Agents Chemother. 2004, 48: 4800-4807. 10.1128/AAC.48.12.4800-4807.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gottilieb CT, Thomsen LE, Ingmer H, Mygind PH, Kristensen H-H, Gram L: Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiol. 2006, 8: 205-
Article
Google Scholar
Kucharczyk M, Brzezowska M, Maciag A, Lis T, Jezowska-Bojczuk M: Structural features of the Cu(2+)-vancomycin complex. J Inorg Biochem. 2008, 102: 936-942. 10.1016/j.jinorgbio.2007.12.014.
Article
CAS
PubMed
Google Scholar
Swiatek M, Valensin D, Migliorini C, Gaggelli E, Valensin G, Jezowska-Bojczuk M: Unusual binding ability of vancomycin towards Cu2+ ions. Dalton Trans. 2005, 7: 3808-3813.
Article
Google Scholar
Bernard R, Ghachi ME, Mengin-Lecreulx D, Chippaux M, Denizot F: BcrC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance. J BIol Chem. 2005, 280: 28852-28857. 10.1074/jbc.M413750200.
Article
CAS
PubMed
Google Scholar
Cain BD, Norton PJ, Eubanks W, Nick HS, Allen CM: Amplication of the bacA gene confers bacitracin resistance to Escherichia coli. J Bacteriol. 1993, 175: 3784-3789.
CAS
PubMed
PubMed Central
Google Scholar
Cao M, Helmann JD: Regulation of the Bacillus subtilis bcrC bacitracin resistance gene by two extracytoplasmic function σ factors. J Bcteriol. 2002, 184: 6123-6129. 10.1128/JB.184.22.6123-6129.2002.
Article
CAS
Google Scholar
Chalker AF, Ingraham KA, Swayne Lunsford R, Bryant AP, Bryant J, Wallis NG, Broskey JP, Pearson SC, Homes DJ: The bacA gene, which determines bacitracin susceptibility in Streptococcus pneumonia and Staphylococcus aureus, is also required for virulence. Microbiology. 2000, 146: 1547-1553.
Article
CAS
PubMed
Google Scholar
Ohki R, Tateno K, Okada Y, Okajima H, Asai K, Sadaie Y, Murata M, Aiso T: A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter. J Bacteriol. 2003, 185: 51-59. 10.1128/JB.185.1.51-59.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Potter CA, Baumberg S: End-product control of enzymes of branched-chain amino acid biosynthesis in Streptomyces coelicolor. Microbiology. 1996, 142: 1945-1952. 10.1099/13500872-142-8-1945.
Article
CAS
PubMed
Google Scholar
Davies J: Are antibiotics naturally antibiotics?. J Ind Microbiol Biotechnol. 2006, 33: 496-499. 10.1007/s10295-006-0112-5.
Article
CAS
PubMed
Google Scholar
Davies J: Small molecules: The lexicon of biodiversity. J Biotechnol. 2007, 129: 3-5. 10.1016/j.jbiotec.2006.11.023.
Article
CAS
PubMed
Google Scholar
Yim G, Wang HH, Davies J: The truth about antibiotics. Int J Med Microbiol. 2006, 296: 163-170. 10.1016/j.ijmm.2006.01.039.
Article
CAS
PubMed
Google Scholar
Yim G, Wang HH, Davies J: Antibiotics as signalling molecules. Phil Trans R Soc. 2007, 362: 1195-1200. 10.1098/rstb.2007.2044.
Article
CAS
Google Scholar
Goh E-B, Yim G, Tsui W, McClure J, Surette MG, Davies J: Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci. 2002, 99: 17025-17030. 10.1073/pnas.252607699.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mesak LR, Miao V, Davies J: Effects of subinhibitory concentrations of antibiotics on SOS and DNA repair gene expression in Staphylococcus aureus. Antimicrob Agents Chemother. 2008, 52: 3394-3397. 10.1128/AAC.01599-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yim G, de la Cruz F, Spiegelman GB, Davies J: Transcription modulation of Salmonella enteric serovar typhimurium promoters by sub-MIC levels of rifampin. J Bacteriol. 2006, 188: 7988-7991. 10.1128/JB.00791-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA: Practical Streptomyces Genetics. 2000, John Innes Foundation
Google Scholar
The R project for statistical computing. [http://www.r-project.org/]
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003, 31: e15-10.1093/nar/gng015.
Article
PubMed
PubMed Central
Google Scholar
Bauer S, Gagneur J, Robinson PN: Going Bayesian: model-based gene set analysis of genome-scale data. Nucleic Acids Res. 2010, 38: 3523-3532. 10.1093/nar/gkq045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gust B, Challis GL, Fowler K, Kieser T, Chater KF: PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci. 2003, 100: 1541-1546. 10.1073/pnas.0337542100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishop A, Fielding S, Dyson P, Herron P: Systematic Insertional Mutagenesis of a Streptomycete Genome: A Link Between Osmoadaptation and Antibiotic Production. Genome Res. 2004, 14: 893-900. 10.1101/gr.1710304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrews J: Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001, 48: 5-16.
Article
CAS
PubMed
Google Scholar
Rajaram S, Oono Y: NeatMap: non-clustering heat map alternatives in R. BMC Bioinformatics. 2010, 11: 45-10.1186/1471-2105-11-45.
Article
PubMed
PubMed Central
Google Scholar