Fei J, Singh D, Zhang Q, Park S, Balasubramanian D, Golding I, Vanderpool CK, Ha T. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science. 2015; 347(6228):1371–4. doi:10.1126/science.1258849.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogowska AT, Puchta O, Czarnecka AM, Kaniak A, Stepien PP, Golik P. Balance between Transcription and RNA Degradation Is Vital for Saccharomyces cerevisiae Mitochondria: Reduced Transcription Rescues the Phenotype of Deficient RNA Degradation. Mol Biol Cell. 2005; 17(3):1184–93. doi:10.1091/mbc.e05-08-0796.
Article
CAS
PubMed
Google Scholar
Chiba Y, Mineta K, Hirai MY, Suzuki Y, Kanaya S, Takahashi H, Onouchi H, Yamaguchi J, Naito S. Changes in mRNA Stability Associated with Cold Stress in Arabidopsis Cells. Plant Cell Physiol. 2012; 54(2):180–94. doi:10.1093/pcp/pcs164.
Article
CAS
PubMed
Google Scholar
Peterson JR, Cole JA, Fei J, Ha T, Luthey-Schulten ZA. Effects of DNA replication on mRNA noise. Proc Natl Acad Sci USA. 2015; 112(52):15886–91. doi:10.1073/pnas.1516246112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA. 2002; 99(15):9697–702. doi:10.1073/pnas.112318199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow C. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 2003; 13(2):216–23. doi:10.1101/gr.912603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esquerré T, Laguerre S, Turlan C, Carpousis AJ, Girbal L, Cocaign-Bousquet M. Dual role of transcription and transcript stability in the regulation of gene expression in Escherichia coli cells cultured on glucose at different growth rates. Nucleic Acids Res. 2013; 42(4):2460–72. doi:10.1093/nar/gkt1150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dressaire C, Picard F, Redon E, Loubière P, Queinnec I, Girbal L, Cocaign-Bousquet M. Role of mRNA Stability during Bacterial Adaptation. PLoS ONE. 2013; 8(3):59059. doi:10.1371/journal.pone.0059059.
Article
CAS
Google Scholar
Esquerré T, Moisan A, Chiapello H, Arike L, Vilu R, Gaspin C, Cocaign-Bousquet M, Girbal L. Genome-wide investigation of mRNA lifetime determinants in Escherichia coli cells cultured at different growth rates. BMC Genomics. 2015; 16(1):275. doi:10.1186/s12864-015-1482-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rustad TR, Minch KJ, Brabant W, Winkler JK, Reiss DJ, Baliga NS, Sherman DR. Global analysis of mRNA stability in Mycobacterium tuberculosis. Nucleic Acids Res. 2012; 41(1):509–17. doi:10.1093/nar/gks1019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hambraeus G, von Wachenfeldt C, Hederstedt L. Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Genet Genomics. 2003; 269(5):706–14. doi:10.1007/s00438-003-0883-6.
Article
CAS
PubMed
Google Scholar
Kristoffersen SM, Haase C, Weil MR, Passalacqua KD, Niazi F, Hutchison SK, Desany B, Kolstø AB, Tourasse NJ, Read TD, Økstad O. Global mRNA decay analysis at single nucleotide resolution reveals segmental and positional degradation patterns in a gram-positive bacterium. Genome Biol. 2012; 13(4):R30. doi:10.1186/gb-2012-13-4-r30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bini E, Dikshit V, Dirksen K, Drozda M, Blum P. Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus. RNA. 2002; 8(9):1129–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson AF, Lundgren M, Eriksson S, Rosenlund M, Bernander R, Nilsson P. Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biol. 2006; 7(10):R99. doi:10.1186/gb-2006-7-10-r99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hundt S, Zaigler A, Lange C, Soppa J, Klug G. Global Analysis of mRNA Decay in Halobacterium salinarum NRC-1 at Single-Gene Resolution Using DNA Microarrays. J Bacteriol. 2007; 189(19):6936–44. doi:10.1128/jb.00559-07
Article
CAS
PubMed
PubMed Central
Google Scholar
Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk HP, Fraser CM, Smith HO, Woese CR, Venter JC. Complete genome sequence of the methanogenic archaeon, methanococcus jannaschii. Science. 1996; 273(5278):1058–73. doi:10.1126/science.273.5278.1058.
Article
CAS
PubMed
Google Scholar
Zhang J, Olsen GJ. Messenger RNA processing in Methanocaldococcus (Methanococcus) jannaschii. RNA. 2009; 15(10):1909–16. doi:10.1261/rna.1715209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Liu CL, Storey JD, Tibshirani RJ, Herschlag D, Brown PO. Precision and functional specificity in mRNA decay. Proc Natl Acad Sci USA. 2002; 99(9):5860–5. doi:10.1073/pnas.092538799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grigull J, Mnaimneh S, Pootoolal J, Robinson MD, Hughes TR. Genome-Wide Analysis of mRNA Stability Using Transcription Inhibitors and Microarrays Reveals Posttranscriptional Control of Ribosome Biogenesis Factors. Mol Cell Biol. 2004; 24(12):5534–47. doi:10.1128/mcb.24.12.5534-5547.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munchel SE, Shultzaberger RK, Takizawa N, Weis K. Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay. Mol Biol Cell. 2011; 22(15):2787–95. doi:10.1091/mbc.e11-01-0028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geisberg JV, Moqtaderi Z, Fan X, Ozsolak F, Struhl K. Global Analysis of mRNA Isoform Half-Lives Reveals Stabilizing and Destabilizing Elements in Yeast. Cell. 2014; 156(4):812–24. doi:10.1016/j.cell.2013.12.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 2002; 12(4):532–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Micro. 2008; 6(8):579–91. doi:10.1038/nrmicro1931.
Article
CAS
Google Scholar
Rothman DH, Fournier GP, French KL, Alm EJ, Boyle EA, Cao C, Summons RE. Methanogenic burst in the end-Permian carbon cycle. Proc Natl Acad Sci USA. 2014; 111(15):5462–7. doi:10.1073/pnas.1318106111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bapteste E, Brochier C, Boucher Y. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea. 2005; 1(5):353–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maslov S, Krishna S, Pang TY, Sneppen K. Toolbox model of evolution of prokaryotic metabolic networks and their regulation. Proc Natl Acad Sci USA. 2009; 106(24):9743–8. doi:10.1073/pnas.0903206106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matschiavelli N, Oelgeschläger E, Cocchiararo B, Finke J, Rother M. Function and Regulation of Isoforms of Carbon Monoxide Dehydrogenase/Acetyl Coenzyme A Synthase in Methanosarcina acetivorans. J Bacteriol. 2012; 194(19):5377–87. doi:10.1128/jb.00881-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Qi L, Guo Y, Yue L, Li Y, Ge W, Wu J, Shi W, Dong X. Global mapping transcriptional start sites revealed both transcriptional and post-transcriptional regulation of cold adaptation in the methanogenic archaeon Methanolobus psychrophilus. Sci Rep. 2015; 5:9209. doi:10.1038/srep09209.
Article
CAS
PubMed
Google Scholar
Jäger D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA. Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci USA. 2009; 106(51):21878–82. doi:10.1073/pnas.0909051106.
Article
PubMed
PubMed Central
Google Scholar
Jäger D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA. An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains. Nucleic Acids Res. 2012; 40(21):10964–79. doi:10.1093/nar/gks847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2014; 43(D1):261–9. doi:10.1093/nar/gku1223.
Article
Google Scholar
Makarova KS, Wolf YI, Koonin EV. Archaeal Clusters of Orthologous Genes (arCOGs): An Update and Application for Analysis of Shared Features between Thermococcales, Methanococcales, and Methanobacteriales. Life. 2015; 5(1):818–40. doi:10.3390/life5010818.
Article
PubMed
PubMed Central
Google Scholar
Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2012; 41(D1):377–86. doi:10.1093/nar/gks1118.
Article
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinform. 2010; 26(1):139–40. doi:10.1093/bioinformatics/btp616.
Article
CAS
Google Scholar
Li J, Witten DM, Johnstone IM, Tibshirani R. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostats. 2011; 13(3):523–38. doi:10.1093/biostatistics/kxr031.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. doi:10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohlin L, Gunsalus RP. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A. BMC Microbiol. 2010; 10(1):62. doi:10.1186/1471-2180-10-62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Li L, Rejtar T, Karger BL, Ferry JG. Proteome of Methanosarcina acetivorans Part II: Comparison of Protein Levels in Acetate- and Methanol-Grown Cells. J Proteome Res. 2005; 4(1):129–35. doi:10.1021/pr049831k.
Article
CAS
PubMed
Google Scholar
Bose A, Pritchett MA, Rother M, Metcalf WW. Differential Regulation of the Three Methanol Methyltransferase Isozymes in Methanosarcina acetivorans C2A. J Bacteriol. 2006; 188(20):7274–83. doi:10.1128/JB.00535-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Li Q, Rohlin L, Kim U, Salmon K, Rejtar T, Gunsalus RP, Karger BL, Ferry JG. Quantitative Proteomic and Microarray Analysis of the Archaeon Methanosarcina acetivorans Grown with Acetate versus Methanol. J Proteome Res. 2007; 6(2):759–71. doi:10.1021/pr060383l.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bose A, Metcalf WW. Distinct regulators control the expression of methanol methyltransferase isozymes in Methanosarcina acetivorans C2A. Mol Microbiol. 2008; 67(3):649–61. doi:10.1111/j.1365-2958.2007.06075.x.
Article
CAS
PubMed
Google Scholar
Anderson KL, Apolinario EE, MacAuley SR, Sowers KR. A 5 ′ Leader Sequence Regulates Expression of Methanosarcinal CO Dehydrogenase/Acetyl Coenzyme A Synthase. J Bacteriol. 2009; 191(22):7123–8. doi:10.1128/JB.00731-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buan NR, Metcalf WW. Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase. Mol Microbiol. 2010; 75(4):843–53. doi:10.1111/j.1365-2958.2009.06990.x.
Article
CAS
PubMed
Google Scholar
Price MN, Huang KH, Alm EJ, Arkin AP. A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res. 2005; 33(3):880–92. doi:10.1093/nar/gki232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taboada B, Ciria R, Martinez-Guerrero CE, Merino E. ProOpDB: Prokaryotic Operon DataBase. Nucleic Acids Res. 2011; 40(D1):627–31. doi:10.1093/nar/gkr1020.
Article
CAS
Google Scholar
McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool CK, Tjaden B. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 2013; 41(14):140. doi:10.1093/nar/gkt444.
Article
CAS
Google Scholar
Mao X, Ma Q, Zhou C, Chen X, Zhang H, Yang J, Mao F, Lai W, Xu Y. DOOR 2.0: presenting operons and their functions through dynamic and integrated views. Nucleic Acids Res. 2013; 42(D1):654–9. doi:10.1093/nar/gkt1048.
Article
CAS
Google Scholar
Benedict MN, Gonnerman MC, Metcalf WW, Price ND. Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A. J Bacteriol. 2012; 194(4):855–65. doi:10.1128/jb.06040-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar VS, Ferry JG, Maranas CD. Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans. BMC Syst Biol. 2011; 5(1):28. doi:10.1186/1752-0509-5-28.
Article
Google Scholar
O’Donoghue P, Sethi A, Woese CR, Luthey-Schulten ZA. The evolutionary history of Cys-tRNA Cys formation. Proc Natl Acad Sci USA. 2005; 102(52):19003–8. doi:10.1073/pnas.0509617102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Yates 3rd JR, Ibba M, Söll D. RNA-Dependent Cysteine Biosynthesis in Archaea. Science. 2005; 307(5717):1969–72. doi:10.1126/science.1108329.
Article
CAS
PubMed
Google Scholar
Miller D, Wang Y, Xu H, Harich K, White RH. Biosynthesis of the 5-(Aminomethyl)-3-furanmethanol Moiety of Methanofuran. Biochem. 2014; 53(28):4635–47. doi:10.1021/bi500615p.
Article
CAS
Google Scholar
Wang Y, Xu H, Harich KC, White RH. Identification and Characterization of a Tyramine–Glutamate Ligase (MfnD) Involved in Methanofuran Biosynthesis. Biochem. 2014; 53(39):6220–30. doi:10.1021/bi500879h.
Article
CAS
Google Scholar
Wang Y, Jones MK, Xu H, Ray WK, White RH. Mechanism of the Enzymatic Synthesis of 4-(Hydroxymethyl)-2-furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate Catalyzed by 4-HFC-P Synthase. Biochem. 2015; 54(19):2997–3008. doi:10.1021/acs.biochem.5b00176.
Article
CAS
Google Scholar
Wang Y, Xu H, White RH. Identification of the Final Two Genes Functioning in Methanofuran Biosynthesis in Methanocaldococcus jannaschii. J Bacteriol. 2015; 197(17):2850–8. doi:10.1128/JB.00401-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matschiavelli N, Rother M. Role of a putative tungsten-dependent formylmethanofuran dehydrogenase in Methanosarcina acetivorans. Arch Microbiol. 2014; 197(3):379–88. doi:10.1007/s00203-014-1070-3.
Article
CAS
PubMed
Google Scholar
Fu H, Metcalf WW. Genetic Basis for Metabolism of Methylated Sulfur Compounds in Methanosarcina Species. J Bacteriol. 2015; 197(8):1515–24. doi:10.1128/jb.02605-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isobe K, Ogawa T, Hirose K, Yokoi T, Yoshimura T, Hemmi H. Geranylgeranyl reductase and ferredoxin from methanosarcina acetivorans are required for the synthesis of fully reduced archaeal membrane lipid in escherichia coli cells. J Bacteriol. 2013; 196(2):417–23. doi:10.1128/jb.00927-13.
Article
CAS
PubMed
Google Scholar
Mori T, Isobe K, Ogawa T, Yoshimura T, Hemmi H. A phytoene desaturase homolog gene from the methanogenic archaeon Methanosarcina acetivorans is responsible for hydroxyarchaeol biosynthesis. Biochem Biophys Res Commun. 2015; 466(2):186–91. doi:10.1016/j.bbrc.2015.09.001.
Article
CAS
PubMed
Google Scholar
Ogawa T, Emi K-i, Koga K, Yoshimura T, Hemmi H. A cis-prenyltransferase from methanosarcina acetivorans catalyzes both head-to-tail and nonhead-to-tail prenyl condensation. FEBS J. 2016; 283(12):2369–83. doi:10.1111/febs.13749.
Article
CAS
PubMed
Google Scholar
Sowers KR, Gunsalus RP. Halotolerance in Methanosarcina spp: Role of N-Acetyl-beta-Lysine, alpha-Glutamate, Glycine Betaine, and K+ as compatible solutes for Osmotic Adaptation. Appl Environ Microbiol. 1995; 61(12):4382–8.
CAS
PubMed
PubMed Central
Google Scholar
Santiago-Martínez MG, Encalada R, Lira-Silva E, Pineda E, Gallardo-Pérez JC, Reyes-García MA, Saavedra E, Moreno-Sánchez R, Marín-Hernández A, Jasso-Chávez R. The nutritional status of methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes. FEBS J. 2016; 283(10):1979–99. doi:10.1111/febs.13717.
Article
CAS
PubMed
Google Scholar
Wolfe RS. Chapter one - techniques for cultivating methanogens. In: Rosenzweig AC, Ragsdale SW, editors. Methods in Methane Metabolism, Part A. Methods in Enzymology. San Diego: Academic Press: 2011. p. 1–22, doi:10.1016/B978-0-12-385112-3.00001-9.
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2010; 27(3):431–2. doi:10.1093/bioinformatics/btq675.
Article
CAS
PubMed
PubMed Central
Google Scholar
King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BØ. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways. PLOS Comput Biol. 2015; 11(8):1004321. doi:10.1371/journal.pcbi.1004321.
Article
CAS
Google Scholar
Cao Y, Li J, Jiang N, Dong X. Mechanism for Stabilizing mRNAs Involved in Methanol-Dependent Methanogenesis of Cold-Adaptive Methanosarcina mazei zm-15. Appl Environ Microbiol. 2013; 80(4):1291–8. doi:10.1128/aem.03495-13.
Article
CAS
PubMed
Google Scholar
Kratzer C, Carini P, Hovey R, Deppenmeier U. Transcriptional Profiling of Methyltransferase Genes during Growth of Methanosarcina mazei on Trimethylamine. J Bacteriol. 2009; 191(16):5108–15. doi:10.1128/jb.00420-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Youngblut ND, Wirth JS, Henriksen JR, Smith M, Simon H, Metcalf WW, Whitaker RJ. Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment. ISME J. 2015; 9(10):2191–205. doi:10.1038/ismej.2015.31.
Article
PubMed
PubMed Central
Google Scholar
Boone DR, Mathrani IM, Liu Y, Menaia JAGF, Mah RA, Boone JE. Isolation and Characterization of Methanohalophilus portucalensis sp. nov. and DNA Reassociation Study of the Genus Methanohalophilus. Int J Syst Bacteriol. 1993; 43(3):430–7. doi:10.1099/00207713-43-3-430.
Article
Google Scholar
Wilson D, Charoensawan V, Kummerfeld SK, Teichmann SA. DBD taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res. 2008; 36(suppl_1):88–92. doi:10.1093/nar/gkm964.
Google Scholar
Bose A, Kulkarni G, Metcalf WW. Regulation of putative methyl-sulphide methyltransferases in Methanosarcina acetivorans C2A. Mol Microbiol. 2009; 74(1):227–38. doi:10.1111/j.1365-2958.2009.06864.x.
Article
CAS
PubMed
Google Scholar
Reichlen MJ, Vepachedu VR, Murakami KS, Ferry JG. MreA Functions in the Global Regulation of Methanogenic Pathways in Methanosarcina acetivorans. mBio. 2012; 3(4):e00189–12. doi:10.1128/mbio.00189-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catlett JL, Ortiz AM, Buan NR. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production. Appl Environ Microbiol. 2015; 81(19):6528–37. doi:10.1128/aem.01162-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon SH, Turkarslan S, Reiss DJ, Pan M, Burn JA, Costa KC, Lie TJ, Slagel J, Moritz RL, Hackett M, Leigh JA, Baliga NS. A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen. Genome Res. 2013; 23(11):1839–51. doi:10.1101/gr.153916.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichlen MJ, Murakami KS, Ferry JG. Functional Analysis of the Three TATA Binding Protein Homologs in Methanosarcina acetivorans. J Bacteriol. 2010; 192(6):1511–7. doi:10.1128/jb.01165-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neidhardt FC, III RC, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE, (eds).Escherichia Coli and Salmonella: Cellular and Molecular Biology, 2nd edn. Washington, D.C: ASM Press; 1996.
Google Scholar
Zaigler A, Schuster SC, Soppa J. Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii. Mol Microbiol. 2003; 48(4):1089–105. doi:10.1046/j.1365-2958.2003.03497.x.
Article
CAS
PubMed
Google Scholar
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell. 2009; 136(4):731–45. doi:10.1016/j.cell.2009.01.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lange C, Zaigler A, Hammelmann M, Twellmeyer J, Raddatz G, Schuster SC, Oesterhelt D, Soppa J. Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea. BMC Genomics. 2007; 8(1):415. doi:10.1186/1471-2164-8-415.
Article
PubMed
PubMed Central
Google Scholar
Brenneis M, Soppa J. Regulation of translation in haloarchaea: 5’- and 3’-UTRs are essential and have to functionally interact In Vivo. PLoS ONE. 2009; 4(2):e4484. doi:10.1371/journal.pone.0004484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jasso-Chávez R, Santiago-Martínez MG, Lira-Silva E, Pineda E, Zepeda-Rodríguez A, Belmont-Díaz J, Encalada R, Saavedra E, Moreno-Sánchez R. Air-Adapted Methanosarcina acetivorans Shows High Methane Production and Develops Resistance against Oxygen Stress. PLOS ONE. 2015; 10(2):e0117331. doi:10.1371/journal.pone.0117331.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guss AM, Rother M, Zhang JK, Kulkkarni G, Metcalf WW. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for methanosarcina species. Archaea. 2008; 2(3):193–203. doi:10.1155/2008/534081.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sowers KR, Boone JE, Gunsalus RP. Disaggregation of Methanosarcina spp. and Growth as Single Cells at Elevated Osmolarity. Appl Environ Microbiol. 1993; 59(11):3832–9.
CAS
PubMed
PubMed Central
Google Scholar
Metcalf WW, Zhang JK, Shi X, Wolfe RS. Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. J Bacteriol. 1996; 178(19):5797–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson JR, Labhsetwar P, Ellermeier JR, Kohler PRA, Jain A, Ha T, Metcalf WW, Luthey-Schulten Z. Towards a Computational Model of a Methane Producing Archaeum. Archaea. 2014; 2014:1–18. doi:10.1155/2014/898453.
Article
CAS
Google Scholar
Steward FJ, Ottesen EA, DeLong EF. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 2010; 4(7):896–907. doi:10.1038/ismej.2010.18.
Article
CAS
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2012; 41(D1):36–42. doi:10.1093/nar/gks1195.
Article
CAS
Google Scholar
Millman KJ, Aivazis M. Python for Scientists and Engineers. Comput Sci Eng. 2011; 13(2):9–12. doi:10.1109/mcse.2011.36.
Article
Google Scholar
Lorenz R, Bernhart SH, zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011; 6(1):26. doi:10.1186/1748-7188-6-26.
Article
PubMed
PubMed Central
Google Scholar
Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA. 2004; 101(19):7287–92. doi:10.1073/pnas.0401799101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Efficient parameter estimation for RNA secondary structure prediction. Bioinformatics. 2007; 23(13):19–28. doi:10.1093/bioinformatics/btm223.
Article
CAS
Google Scholar
Benedict MN, Henriksen JR, Metcalf WW, Whitaker RJ, Price ND. ITEP: An integrated toolkit for exploration of microbial pan-genomes. BMC Genomics. 2014; 15(1):8. doi:10.1186/1471-2164-15-8.
Article
PubMed
PubMed Central
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016; 33(6):1635–8. doi:10.1093/molbev/msw046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blazier AS, Papin JA. Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol. 2012; 3:299. doi:10.3389/fphys.2012.00299.
Article
PubMed
PubMed Central
Google Scholar
Guss AM, Mukhopadhyay B, Zhang JK, Metcalf WW. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species. Mol Microbiol. 2005; 55(6):1671–80. doi:10.1111/j.1365-2958.2005.04514.x.
Article
CAS
PubMed
Google Scholar
Opulencia RB, Bose A, Metcalf WW. Physiology and Posttranscriptional Regulation of Methanol:Coenzyme M Methyltransferase Isozymes in Methanosarcina acetivorans C2A. J Bacteriol. 2009; 191(22):6928–35. doi:10.1128/jb.00947-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sowers KR, Baron SF, Ferry JG. Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments. Appl Environ Microbiol. 1984; 47(5):971–8.
CAS
PubMed
PubMed Central
Google Scholar