Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178–83.
Article
CAS
PubMed
Google Scholar
Blanc G, Wolfe KH. Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. Plant Cell. 2004;16:1667–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoemaker RC, Schlueter J, Doyle JJ. Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol. 2006;9(2):104–9.
Article
CAS
PubMed
Google Scholar
Livingstone JM, Seguin P, Strömvik MV. An in silico study of the genes for the isoflavonoid pathway enzymes in soybean reveals novel expressed homologues. Can J Plant Sci. 2010;90(4):453–69.
Article
CAS
Google Scholar
Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L. The phenylpropanoid pathway and plant defence - A genomics perspective. Mol Plant Pathol. 2002;3(5):371–90.
Article
CAS
PubMed
Google Scholar
Dastmalchi M, Dhaubhadel S. Proteomic insights into synthesis of isoflavonoids in soybean seeds. Proteomics. 2015;15(10):1646–57.
Article
CAS
PubMed
Google Scholar
Dhaubhadel S, Gijzen M, Moy P, Farhangkhoee M. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol. 2007;143(1):326–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dastmalchi M, Bernards MA, Dhaubhadel S. Twin anchors of the soybean isoflavonoid metabolon: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. Plant J. 2016;85(6):689–706.
Article
CAS
PubMed
Google Scholar
Dastmalchi M, Dhaubhadel S. Soybean chalcone isomerase: evolution of the fold, and the differential expression and localization of the gene family. Planta. 2015;241(2):507–23.
Article
CAS
PubMed
Google Scholar
Ralston L, Subramanian S, Matsuno M, Yu O. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol. 2005;137(4):1375–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graham TL, Graham MY, Subramanian S, Yu O. RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in phytophthora sojae infected tissues. Plant Physiol. 2007;144:728–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu N, Wang P, Li D, Dai L, Zheng C, Lu S, Cai Y, Zhang Z, Qu J, Xia H. Function of chalcone reductase gene CHR1 in soybean. Yi Chuan. 2014;36(7):707–12.
CAS
PubMed
Google Scholar
Liu GY. Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes-vestitone reductase and chalcone reductase. Mol Biol Rep. 2009;36(7):1991–4.
Article
CAS
PubMed
Google Scholar
Dhaubhadel S, Farhangkhoee M, Chapman R. Identification and characterisation of isoflavonoid specific glycosyltransferase and malonyltransferase from soybean seeds. J Exp Bot. 2008;59(4):981–94.
Article
CAS
PubMed
Google Scholar
Dastmalchi M, Dhaubhadel S. Soybean Seed Isoflavonoids: Biosynthesis and Regulation. In: Jetter R, editor. Phytochemicals – Biosynthesis, Function and Application, 44. ᅟ: Springer International Publishing; 2014. p. 1–21.
Chapter
Google Scholar
Ferguson JA, Mathesius U. Signalling interactions during nodule development. J Plant Growth Regul. 2003;22:47–72.
Article
CAS
Google Scholar
Phillips DA, Kapulnik Y. Plant isoflavonoids, pathogens and symbionts. Trends Microbiol. 1995;3(2):58–64.
Article
CAS
PubMed
Google Scholar
Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem. 2004;42(7–8):671–9.
Article
CAS
PubMed
Google Scholar
Subramanian S, Stacey G, Yu O. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 2006;48(2):261–73.
Article
CAS
PubMed
Google Scholar
Dixon RA. Phytooestrogen. Annu Rev Plant Biol. 2004;55:225–61.
Article
CAS
PubMed
Google Scholar
Folman Y, Pope GS. Effect of norethisterone acetate, dimethylstilboestrol, genistein and coumestrol on uptake of [3H]oestradiol by uterus, vagina and skeletal muscle of immature mice. J Endocrinol. 1969;44:213–8.
Article
CAS
PubMed
Google Scholar
Dixon RA, Ferreria D. Genistein. Phytochemistry. 2002;60:205–11.
Article
CAS
PubMed
Google Scholar
Chen AM, Rogan WJ. Isoflavones in soy infant formula: a review of evidence for endocrine and other activity infants. Annu Rev Nutr. 2004;24:33–54.
Article
CAS
PubMed
Google Scholar
Yu O, McGonigle B. Metabolic engineering of isoflavone biosynthesis. Adv Agron. 2005;86:147–90.
Article
CAS
Google Scholar
Yu O, Shi J, Hession AO, Maxwell AA, McGonigle B, Odell JT. Metabolic engineering to increase isoflavone biosynthesis in soybean seeds. Phytochemistry. 2003;63:753–63.
Article
CAS
PubMed
Google Scholar
Liu CJ, Blount JW, Steele CL, Dixon RA. Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci U S A. 2002;99(22):14578–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian S, Graham MA, Yu O, Graham TL. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol. 2005;137:1345–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wijeratne A, Wijeratne S, Lee S, Taylor CG, St Martin SK, McHale L, Dorrance AE. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis. BMC Genomics. 2012;13:428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Han Y, Teng W, Zhang S, Yu K, Poysa V, Anderson T, Ding J, Li W. Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25′. Theor Appl Genet. 2010;121:651–8.
Article
PubMed
Google Scholar
Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G. Identification of Four Soybean Reference Genes for Gene Expression Normalization. Plant Genome. 2008;1(1):44–54.
Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer; 2009.
Book
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25(1):25–9.
CAS
PubMed
Google Scholar
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. The Arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome. Genesis. 2015;53(8):474–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40(Database issue):D1178–86.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT. Production of the Isoflavones Genistein and Daidzein in Non-Legume Dicot and Monocot Tissues. Plant Physiol. 2000;124(2):781–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park N, Xu H, Li X, Kim S-J, Park S. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Funct Integr Genomics. 2011;11(3):491–6.
Article
CAS
PubMed
Google Scholar
Falcone Ferreyra ML, Rius S, Casati P. Flavonoids: Biosynthesis, Biological functions and Biotechnological applications. Front Plant Sci. 2012;3.
Liu RR, Hu YL, Li HL, Lin ZP. Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metab Eng. 2007;9(1):1–7.
Article
PubMed
Google Scholar
Rasmussen S, Jones C. Potential for producing increased levels of isoflavones in transgenic plants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2013;8. doi:10.1079/PAVSNNR20138043.
Akashi T, Aoki T, Ayabe S. CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.), encodes isoflavone 2′-hydroxylase. Biochem Biophys Res Commun. 1998;251(1):67–70.
Article
CAS
PubMed
Google Scholar
Liu CJ, Huhman D, Sumner LW, Dixon RA. Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J. 2003;36(4):471–84.
Article
CAS
PubMed
Google Scholar
Shimada N, Akashi T, Aoki T, Ayabe S. Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant science : an international journal of experimental plant biology. 2000;160(1):37–47.
Article
CAS
Google Scholar
Schwinn K, Miosic S, Davies K, Thill J, Gotame TP, Stich K, Halbwirth H. The B-ring hydroxylation pattern of anthocyanins can be determined through activity of the flavonoid 3′-hydroxylase on leucoanthocyanidins. Planta. 2014.
Hagmann ML, Heller W, Grisebach H. Induction and characterization of a microsomal flavonoid 3′-hydroxylase from parsley cell cultures. European journal of biochemistry / FEBS. 1983;134(3):547–54.
Article
CAS
Google Scholar
Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B. Identification of the Arabidopsis thaliana flavonoid 3′-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem. 2000;381(8):749–53.
Article
CAS
PubMed
Google Scholar
Seitz C, Eder C, Deiml B, Kellner S, Martens S, Forkmann G. Cloning, functional identification and sequence analysis of flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase cDNAs reveals independent evolution of flavonoid 3′,5′-hydroxylase in the Asteraceae family. Plant Mol Biol. 2006;61(3):365–81.
Article
CAS
PubMed
Google Scholar
Tanaka Y, Fukui Y, Fukuchi-Mizutani M, Holton TA, Higgins E, Kusumi T. Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant Cell Physiol. 1995;36(6):1023–31.
CAS
PubMed
Google Scholar
Latunde-Dada AO, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Hertkorn N, Werck-Reichhart D, Ebel J. Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J Biol Chem. 2001;276(3):1688–95.
Article
CAS
PubMed
Google Scholar
Artigot MP, Baes M, Dayde J, Berger M. Expression of flavonoid 6-hydroxylase candidate genes in normal and mutant soybean genotypes for glycitein content. Mol Biol Rep. 2013;40(7):4361–9.
Article
CAS
PubMed
Google Scholar
Hrazdina G, Wagner GJ. Metabolic pathways as enzyme complexes: Evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys. 1985;237(1):88–100.
Article
CAS
PubMed
Google Scholar
Burbulis IE, Winkel-Shirley B. Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci U S A. 1999;96(22):12929–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 2002;5(3):218–23.
Article
CAS
PubMed
Google Scholar
Farrow SC, Facchini PJ. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Front Plant Sci. 2014;5.
de Carolis E, de Luca V. The International Journal of Plant Biochemistry2-Oxoglutarate-dependent dioxygenase and related enzymes: Biochemical characterization. Phytochemistry. 1994;36(5):1093–107.
Article
PubMed
Google Scholar
Cho J-N, Ryu J-Y, Jeong Y-M, Park J, Song J-J, Amasino Richard M, Noh B, Noh Y-S. Control of Seed Germination by Light-Induced Histone Arginine Demethylation Activity. Dev Cell. 2012;22(4):736–48.
Article
CAS
PubMed
Google Scholar
Lange T, Schweimer A, Ward DA, Hedden P, Graebe JE. Separation and characterisation of three 2-oxoglutarate-dependent dioxygenases from Cucurbita maxima L. endosperm involved in gibberellin biosynthesis. Planta. 1994;195(1):98–107.
CAS
Google Scholar
Britsch L, Grisebach H. Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. Eur J Biochem. 1986;156(3):569–77.
Article
CAS
PubMed
Google Scholar
Hagel J, Facchini P. Biochemistry and occurrence of O-demethylation in plant metabolism. Frontiers in Physiology. 2010;1.
Halkier BA, Du L. The biosynthesis of glucosinolates. Trends Plant Sci. 1997;2(11):425–31.
Article
Google Scholar
Britsch L, Ruhnau-Brich B, Forkmann G. Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. J Biol Chem. 1992;267(8):5380–7.
CAS
PubMed
Google Scholar
Halbwirth H, Stich K. An NADPH and FAD dependent enzyme catalyzes hydroxylation of flavonoids in position 8. Phytochemistry. 2006;67(11):1080–7.
Article
CAS
PubMed
Google Scholar
Shi H, Liu Z, Zhu L, Zhang C, Chen Y, Zhou Y, Li F, Li X. Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochim Biophys Sin. 2012;44(7):555–64.
Article
CAS
PubMed
Google Scholar
Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. Embo J. 2014;33(17):1941–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin T, Biruma M, Fridborg I, Okori P, Dixelius C. A highly conserved NB-LRR encoding gene cluster effective against Setosphaeria turcica in sorghum. BMC Plant Biol. 2011;11:151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011;66(1):94–116.
Article
CAS
PubMed
Google Scholar
Qian Y, Xi Y, Cheng B, Zhu S, Kan X. Identification and characterization of the SET domain gene family in maize. Mol Biol Rep. 2014;41(3):1341–54.
Article
CAS
PubMed
Google Scholar
Ma X, Lv S, Zhang C, Yang C. Histone deacetylases and their functions in plants. Plant Cell Rep. 2013;32(4):465–78.
Article
CAS
PubMed
Google Scholar
Frank S, Keck M, Sagasser M, Niehaus K, Weisshaar B, Stracke R. Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant. Plant Biol (Stuttg). 2011;13(1):42–50.
Article
CAS
Google Scholar
Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H + − antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell. 2007;19(6):2023–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugiyama A, Shitan N, Yazaki K. Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol. 2007;144(4):2000–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang Y, Dixon RA. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell. 2011;23(4):1536–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 2013;41(Web Server issue):W597–600.
Article
PubMed
PubMed Central
Google Scholar
Zhao J, Dixon RA. MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell. 2009;21(8):2323–40.
Article
CAS
PubMed
PubMed Central
Google Scholar