Cossins AR, Crawford DL. Fish as models for environmental genomics. Nat Rev Genet. 2005;6:324–33.
Article
CAS
PubMed
Google Scholar
Schulte PM. What is environmental stress? Insights from fish living in a variable environment. J Exp Biol. 2014;217:23–34.
Article
PubMed
Google Scholar
Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, et al. Ecological responses to recent climate change. Nature. 2002;416:389–95.
Article
CAS
PubMed
Google Scholar
Martins EG, Hinch SG, Patterson DA, Hague MJ, Cooke SJ, Miller KM, et al. Effects of river temperature and climate warming on stock-specific survival of adult migrating Fraser River sockeye salmon (Oncorhynchus nerka). Glob Change Biol. 2011;17:99–114.
Article
Google Scholar
Narum SR, Campbell NR, Meyer KA, Miller MR, Hardy RW. Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Mol Ecol. 2013;22:3090–7.
Article
PubMed
Google Scholar
Rebl A, Verleih M, Kobis JM, Kouhn C, Wimmers K, et al. Transcriptome profiling of gill tissue in regionally bred and globally farmed rainbow trout strains reveals different strategies for coping with thermal stress. MarBiotechnol. 2013;15:445–60.
CAS
Google Scholar
Wang Y, Liu Z, Li Z, Shi H, Kang Y, et al. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss. Fish Physiol Biochem. 2016;42:701–10.
Article
CAS
PubMed
Google Scholar
Stefanovic DI, Manzon LA, McDougall CS, Boreham DR, Somers CM, Wilson JY, Manzon RG. Thermal stress and the heat shock response in embryonic and young of the year juvenile lake whitefish. Comp Biochem Physiol Part A Mol Integr Physiol. 2016;193:1–10.
Article
CAS
Google Scholar
Jeffries KM, Hinch SG, Sierocinski T, Pavlidis P, Miller KM. Transcriptomic responses to high water temperature in two species of Pacific salmon. Evol Appl. 2014b;7:286–300.
Article
CAS
PubMed
Google Scholar
Payton SL, Johnson PD, Jenny MJ. Comparative physiological, biochemical and molecular thermal stress response profiles for two unionid freshwater mussel species. J Exp Biol. 2016;219:3562–74.
Article
PubMed
Google Scholar
Vornanen M, Hassinen M, Koskinen H, Krasnov A. Steady-state effects of temperature acclimation on the transcriptome of the rainbow trout heart. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1177–R84.
Article
CAS
PubMed
Google Scholar
Anttila K, Eliason EJ, Kaukinen KH, Miller KM, Farrell AP. Facing warm temperatures during migration: cardiac mRNA responses of two adult Oncorhynchus nerka populations to warming and swimming challenges: cardiac rna responses to warming in oncorhynchus nerka. J Fish Biol. 2014;84:1439–56.
Article
CAS
PubMed
Google Scholar
Liu S, Wang X, Sun F, Zhang J, Feng J, Li H, et al. RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol Genomics. 2013;45:462–76.
Article
CAS
PubMed
Google Scholar
Helmuth B, Kingsolver J, Carrington E. Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol. 2005;67:177–201.
Article
CAS
PubMed
Google Scholar
Somero G. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers. J Exp Biol. 2010;213:912–20.
Article
CAS
PubMed
Google Scholar
Komoroske LM, Connon RE, Jeffries KM, Fangue NA. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish. Mol Ecol. 2015;24:4960–81.
Article
CAS
PubMed
Google Scholar
Tomalty KMH, Meek MH, Stephens MR, Rincón G, Fangue NA, May BP, et al. Transcriptional response to acute thermal exposure in juvenile Chinook salmon determined by RNAseq. G3 Bethesda Md. 2015;7:1335–49.
Article
CAS
Google Scholar
Connon RE, Jeffries KM, Komoroske LM, Todgham AE, Fangue NA. The utility of transcriptomics in fish conservation. J Exp Biol. 2018;221:jeb148833.
Article
PubMed
Google Scholar
Zhang Z, Ju Z, Wells MC, Walter RB. Genomic approaches in the identification of hypoxia biomarkers in model fish species. J Exp Mar Bio Ecol. 2009;381:S180–S87.
Article
CAS
PubMed Central
Google Scholar
Jeffries KM, Hinch SG, Gale MK, Clark TD, Lotto AG, Casselman MT, et al. Immune response genes and pathogen presence predict migration survival in wild salmon smolts. Mol Ecol. 2014a;23:5803–15.
Article
CAS
PubMed
Google Scholar
Miller KM, Teffer A, Tucker S, Li S, Schulze AD, Trudel M, et al. Infectious disease, shifting climates, and opportunistic predators: cumulative 603 factors potentially impacting wild salmon declines. Evol App. 2014;7:812–55.
Article
Google Scholar
Miller KM, Günther OP, Li S, Kaukinen KH, Ming TJ. Molecular indices of viral disease development in wild migrating salmon. Conserv Physiol. 2017;5:cox036.
Article
PubMed
PubMed Central
Google Scholar
Teffer AK, Hinch SG, Miller KS, Patterson DA, Farrell AP, Cooke SJ, et al. Capture severity, infectious disease processes, and sex influence post-release mortality of sockeye salmon bycatch. Conserv Physiol. 2017;5:1–30.
Article
Google Scholar
Groot C, Margolis L. Pacific salmon life histories. Vancouver, BC: UBC Press; 1991. p. 393.
Google Scholar
Carter K. The effects of temperature on steelhead trout, Coho salmon, and Chinook salmon biology and function by life stage. North Coast Region: California Regional Water Quality Control Board; 2005. p. 1–26.
Elliott J. Some aspects of thermal stress on freshwater teleosts. In: Pickering AD, editor. Stress and fish. London: Academic Press; 1981. p. 209–45.
Google Scholar
Fleming IA, Jensen AJ. Fisheries: effect of climate change on the life cycles of salmon. In: Munn T, editor. Encyclopedia of global environmental change, vol. 3. Chichester: John Wiley & Sons; 2002. p. 309–12.
Google Scholar
Evans TG, Hammill E, Kaukinen K, Schulze AD, Patterson DA, English KK, et al. Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration. Mol Ecol. 2011;20:4472–89.
Article
CAS
PubMed
Google Scholar
Miller KM, Li S, Kaukinen KH, Ginther N, Hammill E, Curtis JMR, et al. Genomic signatures predict migration and spawning failure in wild Canadian salmon. Science. 2011;331:214–7.
Article
CAS
PubMed
Google Scholar
Jeffries KM, Hinch SG, Sierocinski T, Clark TD, Eliason EJ, Donaldson MR, et al. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka). Ecol Evol. 2012;2:1747–64.
Article
PubMed
PubMed Central
Google Scholar
Drenner SM, Hinch SG, Furey NB, Clark TD, Li S, Ming T, et al. Transcriptome patterns and blood physiology associated with homing success of sockeye salmon during their final stage of marine migration. Can J Fish Aquat Sci. 2018;75:1511–24.
Article
CAS
Google Scholar
Quinn NL, McGowan CR, Cooper GA, Koop BF, Davidson WS. Ribosomal genes and heat shock proteins as putative markers for chronic, sublethal heat stress in Arctic charr: applications for aquaculture and wild fish. Physiol Genomics. 2011a;43:1056–64.
Article
CAS
PubMed
Google Scholar
Quinn NL, McGowan CR, Cooper GA, Koop BF, Davidson WS. Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physiol Genomics. 2011b;43:685–96.
Article
CAS
PubMed
Google Scholar
Lewis JM, Hori TS, Rise ML, Walsh PJ, Currie S. Transcriptome responses to heat stress in the nucleated red blood cells of the rainbow trout (Oncorhynchus mykiss). Physiol Genomics. 2010;42(3):361–73.
Article
CAS
PubMed
Google Scholar
Logan CA, Buckley BA. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. J Exp Biol. 2015;218:1915–24.
Article
PubMed
Google Scholar
McCormick SD. Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity. Can J Fish Aquat Sci. 1993;50:656–8.
Article
CAS
Google Scholar
Cooke SJ, Crossin GT, Patterson DA, English KK, Hinch SG, Young JL, et al. Coupling non-invasive physiological assessments with telemetry to understand inter-individual variation in behaviour and survivorship of sockeye salmon: development and validation of a technique. J Fish Biol. 2005;67:1–17.
Article
Google Scholar
Cooke SJ, Hinch SG, Crossin GT, Patterson DA, English KK, Shrimpton JM, et al. Physiology of individual late-run Fraser River sockeye salmon (Oncorhynchus nerka) sampled in the ocean correlates with fate during spawning migration. Can J Fish Aquat Sci. 2006;63:1469–80 Miller KM, Li S, Kaukinen KH, Ginther N, Hammill E, Curtis JMR, et al. Genomic signatures predict migration and spawning failure in wild Canadian salmon. Science. 2011;331:214–17.
Article
Google Scholar
Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61:243–82.
Article
CAS
PubMed
Google Scholar
Sharp VA, Millerb D, Bythell JC. Expression of low molecular weight HSP 70 related polypeptides from the symbiotic sea anemone Anemonia viridis Forskall in response to heat shock. J Exp Marine Biol Ecol. 1994;179:179–93.
Article
CAS
Google Scholar
Miller KM, Schulze AD, Ginther N, Li S, Patterson DA, Farrell AP, Hinch SG. Salmon spawning migration: metabolic shifts and environmental triggers. Comp Biochem Physiol Part D Genomics Proteomics. 2009;4:75–89.
Article
PubMed
CAS
Google Scholar
Ishida Y, Nagata K. Hsp47 as a collagen-specific molecular chaperone. Methods Enzymol. 2011;499:167–82.
Article
CAS
PubMed
Google Scholar
Nagata K, Hosokawa N. Regulation and function of collagen-specific molecular chaperon e, HSP47. Cell Struct Funct. 1996;21:425–30.
Article
CAS
PubMed
Google Scholar
Widmer C, Gebauer JM, Brunstein E, Rosenbaum S, Zaucke F, Drögemüller C, et al. Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. Proc Natl Acad Sci U S A. 2012;109:13243–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verleih M, Borchel A, Krasnov A, Rebl A, Korytář T, Kühn C, et al. Impact of thermal stress on kidney-specific gene expression in farmed regional and imported rainbow trout. Mar Biotechnol N Y N. 2015;17:576–92.
Article
CAS
Google Scholar
Hori TS, Gamperl AK, Afonso LOB, Johnson SC, Hubert S, Kimball J, et al. Heat-shock responsive genes identified and validated in Atlantic cod (Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques. BMC Genomics. 2010;11:72.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kassahn KS, Caley MJ, Ward AC, Connolly AR, Stone G, Crozier RH. Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol. 2007;16:1749–63.
Article
CAS
PubMed
Google Scholar
Mahanty A, Purohit GK, Yadav RP, Mohanty S, Mohanty BP. Hsp90 and hsp47 appear to play an important role in minnow Puntius sophore for surviving in the hot spring run-off aquatic ecosystem. Fish Physiol Biochem. 2017;43:89–102.
Article
CAS
PubMed
Google Scholar
Huang JQ, Tao R, Li L, Ma K, Xu L, Ai G, et al. Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis in mice. Int J Parasitol. 2014;44:23–35.
Article
CAS
PubMed
Google Scholar
Bagatell R, Paine-Murrieta GD, Taylor CW, Puccini EJ, Acing S, Benjamin IJ, Whitesell L. Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res. 2000;6:3312–8.
CAS
PubMed
Google Scholar
Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther. 2002;2:3–24.
Article
CAS
PubMed
Google Scholar
Sangster TA, Salathia N, Lee HN, Watanabe E, Schellenberg K, Morneau K, et al. HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2008;105:2969–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Padmini E, Rani MU. Seasonal influence on heat shock protein 90α and heat shock factor 1 expression during oxidative stress in fish hepatocytes from polluted estuary. J Exp Mar Biol Ecol. 2009;372:1–8.
Article
CAS
Google Scholar
Jarosz DF, Lindquist S. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science. 2010;330:1820–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010;11:515–28.
Article
CAS
PubMed
Google Scholar
Healy TM, Tymchuk WE, Osborne EJ, Schulte PM. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol Genomics. 2010;41:171–84.
Article
CAS
PubMed
Google Scholar
Methling C, Aluru N, Vijayan MM, Steffensen JF. Effect of moderate hypoxia at three acclimation temperatures on stress responses in Atlantic cod with different haemoglobin types. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:485–90.
Article
PubMed
CAS
Google Scholar
Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis. 2010;33:789–801.
Article
CAS
PubMed
Google Scholar
Logan CA, Somero GN. Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). Am J Physiol Regul Integr Comp Physiol. 2011;300:R1373–R83.
Article
CAS
PubMed
Google Scholar
Duran I, Nevarez L, Sarukhanov A, Wu S, Lee K, Krejci P, et al. HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet. 2015;24:1918–28.
Article
CAS
PubMed
Google Scholar
Ishikawa Y, Holden P, Bächinger HP. Heat shock protein 47 and 65 KDa FK506 binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum. J Biol Chem. 2017;292:17216–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Logan CA, Somero GN. Transcriptional responses to thermal acclimation in the eurythermal fish Gillichthys mirabilis (Cooper 1864). Am J Physiol Regul Integr Comp Physiol. 2010;299:R843–R52.
Article
CAS
PubMed
Google Scholar
Silvestre J, Linares-Casenave J, Doroshov SI, Kültz D. A proteomic analysis of green and white sturgeon larvae exposed to heat stress and selenium. Sci Total Environ. 2010;408:3176–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buckley BA, Gracey AY, Somero GN. The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis. J Exp Biol. 2006;209:2660–77.
Article
CAS
PubMed
Google Scholar
Buckley BA, Somero GN. cDNA microarray analysis reveals the capacity of the cold-adapted Antarctic fish Trematomus bernacchii to alter gene expression in response to heat stress. Polar Biol. 2009;32:403–15.
Article
Google Scholar
Xu Z, Gan L, Li T, Xu C, Chen K, Wang W, et al. Transcriptome profiling and molecular pathway analysis of genes in association with salinity adaptation in Nile tilapia Oreochromis niloticus. PLoS One. 2015;10:e0136506.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu C, Su G, Giesy JP, Letcher RJ, Li G, Agrawal I, Li J, et al. Acute exposure to Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) causes hepatic inflammation and leads to hepatotoxicity in Zebrafish. Sci Rep. 2016;6:19045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter CA, Garcia-Reyero N, Martyniuk C, Knoebl I, Pope M, Wright-Osment MK, et al. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury. Environ Toxicol Chem. 2011;30:301–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Zhang Z, Dong H, Jiang X. Molecular cloning and sequence analysis of selenoprotein W gene and its mRNA expression patterns in response to metabolic status and cadmium exposure in goldfish, Carassius auratus. Comp Biochem Physiol B Biochem Mol Biol. 2015;184:1–9.
Article
CAS
PubMed
Google Scholar
Whanger PD. Selenoprotein expression and function—Selenoprotein W. Biochim Biophys Acta. 2009;1790:1448–52.
Article
CAS
PubMed
Google Scholar
Kassahn KS, Crozier RH, Portner HO, Caley MJ. Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol Rev. 2009;84:277–92.
Article
PubMed
Google Scholar
Nivon M, Abou-Samra M, Richet E, Guyot B, Arrigo AP, Kretz-Remy C. NF-κB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex. J Cell Sci. 2012;125:1141–51.
Article
CAS
PubMed
Google Scholar
Liu Y, Zhou G, Wang Z, Guo X, Xu Q, Huang Q, Su L. NF-κB signaling is essential for resistance to heat stress-induced early stage apoptosis in human umbilical vein endothelial cells. Sci Rep. 2015;5:13547.
Article
PubMed
PubMed Central
Google Scholar
Kim SE, Mori R, Komatsu T, Chiba T, Hayashi H, Park S, et al. Upregulation of cytochrome c oxidase subunit 6b1 (Cox6b1) and formation of mitochondrial supercomplexes: implication of Cox6b1 in the effect of calorie restriction. Age. 2015;37:45.
Article
CAS
PubMed Central
Google Scholar
Abele D, Puntarulo S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol. 2004;138:405–15.
Article
PubMed
CAS
Google Scholar
Almroth BC, Asker N, Wassmur B, Rosengren A, Jutfelt F, Gräns A, et al. Warmer water temperature results in oxidative damage in an Antarctic fish, the bald notothen. J Exp Mar Bio Ecol. 2015;468:130–7.
Article
CAS
Google Scholar
Kammer AR, Orczewska JI, O'Brien K. Oxidative stress is transient and tissue specific during cold acclimation of threespine stickleback. J Exp Biol. 2011;214:1248–56.
Article
CAS
PubMed
Google Scholar
Lushchak VI. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol. 2011;101:13–30.
Article
CAS
PubMed
Google Scholar
Lushchak VI, Bagnyukova TV. Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp Biochem Physiol C: Toxicol Pharmacol. 2006;143:36–41.
Google Scholar
Liu B, Qian SB. Translational reprogramming in stress response. Wiley Interdiscip Rev RNA. 2014;5:301–5.
Article
CAS
PubMed
Google Scholar
Podrabsky JE, Somero GN. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killfish Austrofundulus limnaeus. J Exp Biol. 2004;207:2237–54.
Article
CAS
PubMed
Google Scholar
Schwänhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.
Article
PubMed
CAS
Google Scholar
Kanerva M, Vehmas A, Nikinmaa M, Vuori KA. Spatial variation in transcript and protein abundance of Atlantic salmon during feeding migration in the Baltic Sea. Environ Sci Technol. 2014;48:13969–77.
Article
CAS
PubMed
Google Scholar
Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009;583(24):3966–73.
Article
CAS
PubMed
Google Scholar
Feder ME, Walser JC. The biological limitations of transcriptomics in elucidating stress and stress responses. J Evolution Biol. 2005;18(4):901–10.
Article
CAS
Google Scholar
Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26(3):303–4.
Article
PubMed
CAS
Google Scholar
Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, et al. Gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol. 2000;1:1.
Article
Google Scholar
Shen H, Huang JZ. Sparse principal component analysis via regularized low rank matrix approximation. J Multivar Anal. 2008;99:1015–34.
Article
Google Scholar
Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:1–25.
Article
Google Scholar
Novichkova S, Egorov S, Daraselia N. MedScan, a natural language processing engine for MEDLINE abstracts. Bioinformatics. 2003;19:1699–706.
Article
CAS
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013;30:923–30.
Article
PubMed
CAS
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
Article
CAS
PubMed
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with trinity. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆C
T method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Akbarzadeh A, Leder E. Acclimation of killifish to thermal extremes of hot spring: transcription of gonadal and liver heat shock genes. Comp Biochem Physiol A Mol Integr Physiol. 2016;191:89–97.
Article
CAS
PubMed
Google Scholar
Olsvik PA, Vikes V, Lie KK, Hevroy EM. Transcriptional responses to temperature and low oxygen stress in Atlantic salmon studied with next-generation sequencing technology. BMC Genomics. 2013;14:817.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smith S, Bernatchez L, Beheregaray LB. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics. 2013;14:375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newton JR, Zenger KR, Jerry DR. 2013. Next-generation transcriptome profiling reveals insights into genetic factors contributing to growth differences and temperature adaptation in Australian populations of barramundi (Lates calcarifer). Mar Genomics. 2013;11:45–52.
Article
PubMed
Google Scholar
Lund SG, Caissie D, Cunjak RA, Vijayan MM, Tufts BL. The effects of environmental heat stress on heatshock mRNA and protein expression in Miramichi Atlantic salmon (Salmo salar) parr. Can J Fish Aquat Sci. 2012;59:1553–62.
Article
Google Scholar
Garvin MR, Thorgaard GH, Narum SR. Differential expression of genes that control respiration contribute to thermal adaptation in redband trout (Oncorhynchus mykiss gairdneri). Genome Biol Evol. 2015;7:1404–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picard DJ, Schulte PM. Variation in gene expression in response to stress in two populations of Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol. 2004;137:205–16.
Article
PubMed
CAS
Google Scholar