Suzuki A, Sangani DR, Ansari A, Iwata J. Molecular mechanisms of midfacial developmental defects. Dev Dyn. 2016;245(3):276–93.
Article
PubMed
Google Scholar
Dubey A, Rose RE, Jones DR, Saint-Jeannet JP. Generating retinoic acid gradients by local degradation during craniofacial development: one cell’s cue is another cell’s poison. Genesis. 2018;56(2).
Article
Google Scholar
Chen J, Jacox LA, Saldanha F, Sive H. Mouth development. Wiley Interdiscip Rev Dev Biol. 2017;6(5).
Article
Google Scholar
Szabo-Rogers HL, Smithers LE, Yakob W, Liu KJ. New directions in craniofacial morphogenesis. Dev Biol. 2010;341(1):84–94.
Article
CAS
PubMed
Google Scholar
Helms JA, Cordero D, Tapadia MD. New insights into craniofacial morphogenesis. Development. 2005;132(5):851–61.
Article
CAS
PubMed
Google Scholar
Brickell P, Thorogood P. Retinoic acid and retinoic acid receptors in craniofacial development. Semin Cell Dev Biol. 1997;8(4):437–43.
Article
CAS
PubMed
Google Scholar
Lohnes D, Mark M, Mendelsohn C, Dolle P, Dierich A, Gorry P, Gansmuller A, Chambon P. Function of the retinoic acid receptors (RARs) during development (I). craniofacial and skeletal abnormalities in RAR double mutants. Development. 1994;120(10):2723–48.
CAS
PubMed
Google Scholar
Ackermans MM, Zhou H, Carels CE, Wagener FA, Von den Hoff JW. Vitamin a and clefting: putative biological mechanisms. Nutr Rev. 2011;69(10):613–24.
Article
PubMed
Google Scholar
Wedden SE, Ralphs JR, Tickle C. Pattern formation in the facial primordia. Development. 1988;103 Suppl:31–40.
CAS
PubMed
Google Scholar
Abe M, Maeda T, Wakisaka S. Retinoic acid affects craniofacial patterning by changing Fgf8 expression in the pharyngeal ectoderm. Develop Growth Differ. 2008;50(9):717–29.
Article
CAS
Google Scholar
Mark M, Ghyselinck NB, Chambon P. Retinoic acid signalling in the development of branchial arches. Curr Opin Genet Dev. 2004;14(5):591–8.
Article
CAS
PubMed
Google Scholar
Dupe V, Pellerin I. Retinoic acid receptors exhibit cell-autonomous functions in cranial neural crest cells. Dev Dyn. 2009;238(10):2701–11.
Article
CAS
PubMed
Google Scholar
Dickinson AJ. Using frogs faces to dissect the mechanisms underlying human orofacial defects. Semin Cell Dev Biol. 2016;51:54–63.
Article
PubMed
PubMed Central
Google Scholar
Kennedy AE, Dickinson AJ. Median facial clefts in Xenopus laevis: roles of retinoic acid signaling and homeobox genes. Dev Biol. 2012;365(1):229–40.
Article
CAS
PubMed
Google Scholar
Duester G. Retinoic acid synthesis and signaling during early organogenesis. Cell. 2008;134(6):921–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samarut E, Rochette-Egly C. Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol. 2012;348(2):348–60.
Article
CAS
PubMed
Google Scholar
Niederreither K, Dolle P. Retinoic acid in development: towards an integrated view. Nat Rev Genet. 2008;9(7):541–53.
Article
CAS
PubMed
Google Scholar
Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol. 2015;16(2):110–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arima K, Shiotsugu J, Niu R, Khandpur R, Martinez M, Shin Y, Koide T, Cho KW, Kitayama A, Ueno N, et al. Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays. Dev Dyn. 2005;232(2):414–31.
Article
CAS
PubMed
Google Scholar
Cunningham TJ, Colas A, Duester G. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. Biol Open. 2016;5(12):1821–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J, Hu L, Li L, Huang X, Shi H. Comparison of phenotypic and global gene expression changes in Xenopus tropicalis embryos induced by agonists of RAR and RXR. Toxicol Appl Pharmacol. 2017;330:40–7.
Article
CAS
PubMed
Google Scholar
Wahl SE, Kennedy AE, Wyatt BH, Moore AD, Pridgen DE, Cherry AM, Mavila CB, Dickinson AJ. The role of folate metabolism in orofacial development and clefting. Dev Biol. 2015;405(1):108–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang d W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463(7280):474–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukasawa R, Iida S, Tsutsui T, Hirose Y, Ohkuma Y. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb repressive complex 2 during neuronal differentiation. J Biochem. 2015;158(5):373–84.
Article
CAS
PubMed
Google Scholar
Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM. Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem. 2011;286(5):3250–60.
Article
CAS
PubMed
Google Scholar
Laursen KB, Mongan NP, Zhuang Y, Ng MM, Benoit YD, Gudas LJ. Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Res. 2013;41(13):6430–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge CT, Zhang Y, Shen YF. Role of Ezh2 in the all-trans retinoic acid induced P19 neural differentiation. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2009;31(6):707–11.
CAS
PubMed
Google Scholar
Angrisano T, Sacchetti S, Natale F, Cerrato A, Pero R, Keller S, Peluso S, Perillo B, Avvedimento VE, Fusco A, et al. Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells. Nucleic Acids Res. 2011;39(6):1993–2006.
Article
CAS
PubMed
Google Scholar
Kumar S, Cunningham TJ, Duester G. Nuclear receptor corepressors Ncor1 and Ncor2 (Smrt) are required for retinoic acid-dependent repression of Fgf8 during somitogenesis. Dev Biol. 2016;418(1):204–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YB, Yoshida M, Horinouchi S. Selective induction of cyclin-dependent kinase inhibitors and their roles in cell cycle arrest caused by trichostatin A, an inhibitor of histone deacetylase. Ann N Y Acad Sci. 1999;886:200–3.
Article
CAS
PubMed
Google Scholar
Rothschild SC, Lister JA, Tombes RM. Differential expression of CaMK-II genes during early zebrafish embryogenesis. Dev Dyn. 2007;236(1):295–305.
Article
CAS
PubMed
Google Scholar
Yoshida Y, Kim S, Chiba K, Kawai S, Tachikawa H, Takahashi N. Calcineurin inhibitors block dorsal-side signaling that affect late-stage development of the heart, kidney, liver, gut and somitic tissue during Xenopus embryogenesis. Develop Growth Differ. 2004;46(2):139–52.
Article
CAS
Google Scholar
Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 2008;14(12):1363–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Myers CT, Krieg PA. BMP-mediated specification of the erythroid lineage suppresses endothelial development in blood island precursors. Blood. 2013;122(24):3929–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Myers CT, Appleby SC, Krieg PA. Use of small molecule inhibitors of the Wnt and Notch signaling pathways during Xenopus development. Methods. 2014;66(3):380–9.
Article
CAS
PubMed
Google Scholar
Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5(2):100–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shitasako S, Ito Y, Ito R, Ueda Y, Shimizu Y, Ohshima T. Wnt and Shh signals regulate neural stem cell proliferation and differentiation in the optic tectum of adult zebrafish. Dev Neurobiol. 2017;77(10):1206–20.
Article
CAS
PubMed
Google Scholar
Wehner D, Becker T, Becker CG. Restoration of anatomical continuity after spinal cord transection depends on Wnt/beta-catenin signaling in larval zebrafish. Data Brief. 2018;16:65–70.
Article
PubMed
Google Scholar
Eissenberg JC. Structural biology of the chromodomain: form and function. Gene. 2012;496(2):69–78.
Article
CAS
PubMed
Google Scholar
Guzman-Ayala M, Sachs M, Koh FM, Onodera C, Bulut-Karslioglu A, Lin CJ, Wong P, Nitta R, Song JS, Ramalho-Santos M. Chd1 is essential for the high transcriptional output and rapid growth of the mouse epiblast. Development. 2015;142(1):118–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, Witherspoon K, Gerdts J, Baker C, Vulto-van Silfhout AT, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158(2):263–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A. 2010;152A(3):674–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463(7283):958–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbons R. Alpha thalassaemia-mental retardation, X linked. Orphanet J Rare Dis. 2006;1:15.
Article
PubMed
PubMed Central
Google Scholar
Lu X, Kovalev GI, Chang H, Kallin E, Knudsen G, Xia L, Mishra N, Ruiz P, Li E, Su L, et al. Inactivation of NuRD component Mta2 causes abnormal T cell activation and lupus-like autoimmune disease in mice. J Biol Chem. 2008;283(20):13825–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ignatius MS, Unal Eroglu A, Malireddy S, Gallagher G, Nambiar RM, Henion PD. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development. PLoS One. 2013;8(5):e63218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pillai R, Coverdale LE, Dubey G, Martin CC. Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev Dyn. 2004;231(3):647–54.
Article
CAS
PubMed
Google Scholar
Wang C, Kam RK, Shi W, Xia Y, Chen X, Cao Y, Sun J, Du Y, Lu G, Chen Z, et al. The proto-oncogene transcription factor Ets1 regulates neural crest development through histone deacetylase 1 to mediate output of bone morphogenetic protein signaling. J Biol Chem. 2015;290(36):21925–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urvalek AM, Gudas LJ. Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. J Biol Chem. 2014;289(28):19519–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slusarski DC, Pelegri F. Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol. 2007;307(1):1–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao A. Signaling to gene expression: calcium, calcineurin and NFAT. Nat Immunol. 2009;10(1):3–5.
Article
CAS
PubMed
Google Scholar
Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003;17(18):2205–32.
Article
CAS
PubMed
Google Scholar
Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells. Cell. 2002;109(Suppl):S67–79.
Article
CAS
PubMed
Google Scholar
Kao SC, Wu H, Xie J, Chang CP, Ranish JA, Graef IA, Crabtree GR. Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science. 2009;323(5914):651–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graef IA, Chen F, Crabtree GR. NFAT signaling in vertebrate development. Curr Opin Genet Dev. 2001;11(5):505–12.
Article
CAS
PubMed
Google Scholar
Valetto A, Orsini A, Bertini V, Toschi B, Bonuccelli A, Simi F, Sammartino I, Taddeucci G, Simi P, Saggese G. Molecular cytogenetic characterization of an interstitial deletion of chromosome 21 (21q22.13q22.3) in a patient with dysmorphic features, intellectual disability and severe generalized epilepsy. Eur J Med Genet. 2012;55(5):362–6.
Article
PubMed
Google Scholar
Moller RS, Kubart S, Hoeltzenbein M, Heye B, Vogel I, Hansen CP, Menzel C, Ullmann R, Tommerup N, Ropers HH, et al. Truncation of the Down syndrome candidate gene DYRK1A in two unrelated patients with microcephaly. Am J Hum Genet. 2008;82(5):1165–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ronan A, Fagan K, Christie L, Conroy J, Nowak NJ, Turner G. Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region. J Med Genet. 2007;44(7):448–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacDonnell SM, Weisser-Thomas J, Kubo H, Hanscome M, Liu Q, Jaleel N, Berretta R, Chen X, Brown JH, Sabri AK, et al. CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ Res. 2009;105(4):316–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Francescatto L, Rothschild SC, Myers AL, Tombes RM. The activation of membrane targeted CaMK-II in the zebrafish Kupffer's vesicle is required for left-right asymmetry. Development. 2010;137(16):2753–62.
Article
CAS
PubMed
Google Scholar
Rothschild SC, CAt E, Francescatto L, Lister JA, Garrity DM, Tombes RM. Tbx5-mediated expression of ca(2+)/calmodulin-dependent protein kinase II is necessary for zebrafish cardiac and pectoral fin morphogenesis. Dev Biol. 2009;330(1):175–84.
Article
CAS
PubMed
Google Scholar
Rothschild SC, Francescatto L, Drummond IA, Tombes RM. CaMK-II is a PKD2 target that promotes pronephric kidney development and stabilizes cilia. Development. 2011;138(16):3387–97.
Article
CAS
PubMed
Google Scholar
Dickinson AJ, Sive HL. The Wnt antagonists Frzb-1 and crescent locally regulate basement membrane dissolution in the developing primary mouth. Development. 2009;136(7):1071–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan X, Liu H, Huang H, Liu H, Li L, Yang J, Shi W, Liu W, Wu L. The key role of canonical Wnt/beta-catenin signaling in cartilage chondrocytes. Curr Drug Targets. 2016;17(4):475–84.
Article
CAS
PubMed
Google Scholar
Usami Y, Gunawardena AT, Iwamoto M, Enomoto-Iwamoto M. Wnt signaling in cartilage development and diseases: lessons from animal studies. Lab Investig. 2016;96(2):186–96.
Article
CAS
PubMed
Google Scholar
Curtin E, Hickey G, Kamel G, Davidson AJ, Liao EC. Zebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development. Mech Dev. 2011;128(1–2):104–15.
Article
CAS
PubMed
Google Scholar
Medio M, Yeh E, Popelut A, Babajko S, Berdal A, Helms JA. Wnt/beta-catenin signaling and Msx1 promote outgrowth of the maxillary prominences. Front Physiol. 2012;3:375.
Article
PubMed
PubMed Central
Google Scholar
Dougherty M, Kamel G, Grimaldi M, Gfrerer L, Shubinets V, Ethier R, Hickey G, Cornell RA, Liao EC. Distinct requirements for wnt9a and irf6 in extension and integration mechanisms during zebrafish palate morphogenesis. Development. 2013;140(1):76–81.
Article
CAS
PubMed
Google Scholar
Brugmann SA, Goodnough LH, Gregorieff A, Leucht P, ten Berge D, Fuerer C, Clevers H, Nusse R, Helms JA. Wnt signaling mediates regional specification in the vertebrate face. Development. 2007;134(18):3283–95.
Article
CAS
PubMed
Google Scholar
Nie X, Luukko K, Kettunen P. BMP signalling in craniofacial development. Int J Dev Biol. 2006;50(6):511–21.
CAS
PubMed
Google Scholar
Liu W, Sun X, Braut A, Mishina Y, Behringer RR, Mina M, Martin JF. Distinct functions for Bmp signaling in lip and palate fusion in mice. Development. 2005;132(6):1453–61.
Article
CAS
PubMed
Google Scholar
Lu YP, Han WT, Liu Q, Li JX, Li ZJ, Jiang M, Xu W. Variations in WNT3 gene are associated with incidence of non-syndromic cleft lip with or without cleft palate in a northeast Chinese population. Genet Mol Res. 2015;14(4):12646–53.
Article
CAS
PubMed
Google Scholar
Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, Weber JL, Muller U. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004;74(3):558–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiquet BT, Blanton SH, Burt A, Ma D, Stal S, Mulliken JB, Hecht JT. Variation in WNT genes is associated with non-syndromic cleft lip with or without cleft palate. Hum Mol Genet. 2008;17(14):2212–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menezes R, Letra A, Kim AH, Kuchler EC, Day A, Tannure PN, Gomes da Motta L, Paiva KB, Granjeiro JM, Vieira AR. Studies with Wnt genes and nonsyndromic cleft lip and palate. Birth Defects Res A Clin Mol Teratol. 2010;88(11):995–1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki S, Marazita ML, Cooper ME, Miwa N, Hing A, Jugessur A, Natsume N, Shimozato K, Ohbayashi N, Suzuki Y, et al. Mutations in BMP4 are associated with subepithelial, microform, and overt cleft lip. Am J Hum Genet. 2009;84(3):406–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwata J, Parada C, Chai Y. The mechanism of TGF-beta signaling during palate development. Oral Dis. 2011;17(8):733–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu X, Gao J, Liao Y, Tang S, Lu F. Retinoic acid alters the proliferation and survival of the epithelium and mesenchyme and suppresses Wnt/beta-catenin signaling in developing cleft palate. Cell Death Dis. 2013;4:e898.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song L, Li Y, Wang K, Wang YZ, Molotkov A, Gao L, Zhao T, Yamagami T, Wang Y, Gan Q, et al. Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development. 2009;136(18):3161–71.
Article
CAS
PubMed
Google Scholar
Lee SH, Fu KK, Hui JN, Richman JM. Noggin and retinoic acid transform the identity of avian facial prominences. Nature. 2001;414(6866):909–12.
Article
CAS
PubMed
Google Scholar
Schneider RA, Hu D, Rubenstein JL, Maden M, Helms JA. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development. 2001;128(14):2755–67.
CAS
PubMed
Google Scholar
Billington CJ Jr, Schmidt B, Marcucio RS, Hallgrimsson B, Gopalakrishnan R, Petryk A. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice. Dis Model Mech. 2015;8(2):139–46.
Article
PubMed
CAS
Google Scholar
Amann PM, Eichmuller SB, Schmidt J, Bazhin AV. Regulation of gene expression by retinoids. Curr Med Chem. 2011;18(9):1405–12.
Article
CAS
PubMed
Google Scholar
Beverdam A, Brouwer A, Reijnen M, Korving J, Meijlink F. Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development. 2001;128(20):3975–86.
CAS
PubMed
Google Scholar
Balikova I, Devriendt K, Fryns JP, Vermeesch JR. FOXD1 duplication causes branchial defects and interacts with the TFAP2A gene implicated in the Branchio-Oculo-facial syndrome in causing eye effects in zebrafish. Mol Syndromol. 2010;1(5):255–61.
Article
CAS
PubMed
Google Scholar
Inman KE, Purcell P, Kume T, Trainor PA. Interaction between Foxc1 and Fgf8 during mammalian jaw patterning and in the pathogenesis of syngnathia. PLoS Genet. 2013;9(12):e1003949.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fogelgren B, Kuroyama MC, McBratney-Owen B, Spence AA, Malahn LE, Anawati MK, Cabatbat C, Alarcon VB, Marikawa Y, Lozanoff S. Misexpression of Six2 is associated with heritable frontonasal dysplasia and renal hypoplasia in 3H1 Br mice. Dev Dyn. 2008;237(7):1767–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henn A, Weng H, Novak S, Rettenberger G, Gerhardinger A, Rossier E, Zirn B. SIX2 gene haploinsufficiency leads to a recognizable phenotype with ptosis, frontonasal dysplasia, and conductive hearing loss. Clin Dysmorphol. 2018;27(2):27–30.
PubMed
Google Scholar
Hufnagel RB, Zimmerman SL, Krueger LA, Bender PL, Ahmed ZM, Saal HM. A new frontonasal dysplasia syndrome associated with deletion of the SIX2 gene. Am J Med Genet A. 2016;170A(2):487–91.
Article
PubMed
CAS
Google Scholar
Delacroix L, Moutier E, Altobelli G, Legras S, Poch O, Choukrallah MA, Bertin I, Jost B, Davidson I. Cell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells. Mol Cell Biol. 2010;30(1):231–44.
Article
CAS
PubMed
Google Scholar
Sive HLGR, Harland R. Early development of Xenopus laevis: a laboratory manual. Boston: Cold Spring Harbor Laboratory Press; 2000.
Google Scholar
Nieuwkoop PD, Faber J. Normal table of Xenopus laevis (Daudin). New York: Garland Publishing Inc; 1967.
Google Scholar
Kennedy AE, Dickinson AJ. Quantification of orofacial phenotypes in Xenopus. J Vis Exp. 2014;93:e52062.
Google Scholar
Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011;11(2):353–7.
Article
PubMed
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Karimi et al. 2018, Nucleic Acids Research, Volume 46, Issue D1, pp. D861-D868, https://doi.org/10.1093/nar/gkx936. (Xenbase / PubMed / NAR).
Article
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dessau RB, Pipper CB. “R”--project for statistical computing. Ugeskr Laeger. 2008;170(5):328–30.
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang d W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar