Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497(7450):451–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheffler IE. Mitochondria. 2nd edition. Hoboken: Wiley; 2008.
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.
Article
CAS
PubMed
Google Scholar
DiMauro S, Schon EA. Mechanisms of disease: mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348(26):2656–68.
Article
CAS
PubMed
Google Scholar
Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet. 2012;13(12):878–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6(5):389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.
Article
CAS
PubMed
Google Scholar
Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM, Calvo E, Rodríguez-Hernández MA, et al. Supercomplex assembly determines Electron flux in the mitochondrial Electron transport chain. Science. 2013;340(6140):1567–70.
Article
CAS
PubMed
Google Scholar
Rand DM. The units of selection on mitochondrial DNA. Annu Rev Ecol Syst. 2001;32:415–48.
Article
Google Scholar
Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet. 2001;2(5):342–52.
Article
CAS
PubMed
Google Scholar
Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13(4):729–44.
Article
PubMed
Google Scholar
Rosing HS, Hopkins LC, Wallace DC, Epstein CM, Weidenheim K. Maternally inherited mitochondrial myopathy and myoclonic epilepsy. Ann Neurol. 1985;17(3):228–37.
Article
CAS
PubMed
Google Scholar
Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331:717.
Article
CAS
PubMed
Google Scholar
Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, Kolotushkina O, Mitalipov S. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461:367.
Article
CAS
PubMed
PubMed Central
Google Scholar
Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature. 2010;465:82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2012;493:632.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. 2013;19:1111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montooth KL, Meiklejohn CD, Abt DN, Rand DM. Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution. 2010;64(12):3364–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meiklejohn CD, Holmbeck MA, Siddiq MA, Abt DN, Rand DM, Montooth KL. An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila. PLoS Genet. 2013;9(1):(e1003238). https://doi.org/10.1371/journal.pgen.1003238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mossman JA, Biancani LM, Zhu C-T, Rand DM. Mitonuclear epistasis for development time and its modification by diet in Drosophila. Genetics. 2016;203(1):463–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mossman JA, Tross JG, Li N, Wu Z, Rand DM. Mitochondrial-nuclear interactions mediate sex-specific transcriptional profiles in Drosophila. Genetics. 2016;204(2):613–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu C-T, Ingelmo P, Rand DM. GxGxE for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity. PLoS Genet. 2014;10(5):e1004354.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reinhardt K, Dowling DK, Morrow EH. Mitochondrial replacement, evolution, and the clinic. Science. 2013;341(6152):1345–6.
Article
PubMed
Google Scholar
Mossman JA, Ge JY, Navarro F, Rand DM: Mitochondrial DNA Fitness Depends on Nuclear Genetic Background in Drosophila. G3: Genes|Genomes|Genetics 2019:g3.400067.402019.
Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014;15(1):22–33.
Article
CAS
PubMed
Google Scholar
Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM, et al. Epistasis dominates the genetic architecture of Drosophila quantitative traits. P Natl Acad Sci USA. 2012;109(39):15553–9.
Article
CAS
Google Scholar
Zuk O. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012;109:1193–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmbeck MA, Donner JR, Villa-Cuesta E, Rand DM. A Drosophila model for Mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase. Dis Model Mech. 2015;8(8):843–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mossman JA, Tross JG, Jourjine NA, Li N, Wu Z, Rand DM. Mitonuclear interactions mediate transcriptional responses to hypoxia in Drosophila. Mol Biol Evol. 2017;34(2):447–66.
CAS
PubMed
Google Scholar
Hoekstra LA, Siddiq MA, Montooth KL. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila. Genetics. 2013;195(3):1129–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montooth KL, Hoekstra LA, Siddiq MA. The thermal environment modifies mitochondrial-nuclear effects on insect metabolic performance and plasticity. Integr Comp Biol. 2014;54:E143.
Article
Google Scholar
Zhang C, Montooth KL, Calvi BR: Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality. Development 2017:dev.151951.
Rand DM, Mossman JA, Zhu L, Biancani LM, Ge JY. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila. IUBMB Life. 2018;70(12):1275–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howell N. Human Mitochondrial Diseases: Answering Questions and Questioning Answers. In: International Review of Cytology. Edited by Jeon KW, vol. 186. Cambridge: Academic Press; 1998. p. 49–116.
Google Scholar
Sanchez C, Lachaize C, Janody F, Bellon B, Röder L, Euzenat J, Rechenmann F, Jacq B. Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database. Nucleic Acids Res. 1999;27(1):89–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paliwal S, Fiumera AC, Fiumera HL. Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae. Genetics. 2014;198(3):1251–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Innocenti P, Morrow EH, Dowling DK. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science. 2011;332(6031):845–8.
Article
CAS
PubMed
Google Scholar
Ballard JWO. Comparative genomics of mitochondrial DNA in Drosophila simulans. J Mol Evol. 2000;51(1):64–75.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Chen YM, D.; Robinson, M.; Smyth, G.K.: edgeR: differential expression analysis of digital gene expression data User's Guide. In.; 2016.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.
Google Scholar
Dimitri P, Corradini N, Rossi F, Vernì F. The paradox of functional heterochromatin. Bioessays. 2005;27(1):29–41.
Article
CAS
PubMed
Google Scholar
Pazos Obregón F, Soto P, Lavín JL, Cortázar AR, Barrio R, Aransay AM, Cantera R. Cluster locator, online analysis and visualization of gene clustering. Bioinformatics. 2018;34(19):3377–9.
Article
PubMed
CAS
Google Scholar
Hurst LD, Pál C, Lercher MJ. The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet. 2004;5:299.
Article
CAS
PubMed
Google Scholar
Huang W, Carbone MA, Magwire MM, Peiffer JA, Lyman RF, Stone EA, Anholt RRH, Mackay TFC. Genetic basis of transcriptome diversity in Drosophila melanogaster. Proc Natl Acad Sci. 2015;112(44):E6010–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong J, Horvath S. Understanding network concepts in modules. BMC Syst Biol. 2007;1(1):24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baryshnikova A. Systematic functional annotation and visualization of biological networks. Cell Systems. 2016;2(6):412–21.
Article
CAS
PubMed
Google Scholar
Vinayagam A, Zirin J, Roesel C, Hu Y, Yilmazel B, Samsonova AA, Neumüller RA, Mohr SE, Perrimon N. Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat Methods. 2013;11:94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002;296(5569):910–3.
Article
CAS
PubMed
Google Scholar
Doncheva NT, Assenov Y, Domingues FS, Albrecht M. Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc. 2012;7:670.
Article
CAS
PubMed
Google Scholar
Murali T, Pacifico S, Yu J, Guest S, Roberts GG, Finley RL. DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res. 2011;39(Database issue):736–43.
Article
CAS
Google Scholar
Kwon AT, Arenillas DJ, Hunt RW, Wasserman WW. oPOSSUM-3: Advanced Analysis of Regulatory Motif Over-Representation Across Genes or ChIP-Seq Datasets. G3: Genes|Genomes|Genetics. 2012;2(9):987–1002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, Dalbey R. Kuhn A: Escherichia coli YidC is a membrane insertase for sec-independent proteins. EMBO J. 2004;23(2):294–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2010;471:473.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sokal R, Rohlf F. The comparison of dendrograms by objective methods. Taxon. 1962;11:33–40.
Article
Google Scholar
Galili T. Dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31(22):3718–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman LA, Kruskal WH. Measures of Association for Cross Classifications*. J Am Stat Assoc. 1954;49(268):732–64.
Google Scholar
Baker FB. Stability of two hierarchical grouping techniques case i: sensitivity to data errors. J Am Stat Assoc. 1974;69(346):440–45.
Google Scholar
Weber CC, Hurst LD. Support for multiple classes of local expression clusters in Drosophila melanogaster, but no evidence for gene order conservation. Genome Biol. 2011;12(3):R23.
Article
PubMed
PubMed Central
Google Scholar
D'Elia D, Catalano D, Licciulli F, Turi A, Tripoli G, Porcelli D, Saccone C, Caggese C. The MitoDrome database annotates and compares the OXPHOS nuclear genes of Drosophila melanogaster, Drosophila psedoobscura and Anopheles gambiae. Mitochondrion. 2006;6(5):252–7.
Article
CAS
PubMed
Google Scholar
Montooth KL, Abt DN, Hofmann JW, Rand DM. Comparative genomics of Drosophila mtDNA: novel features of conservation and change across functional domains and lineages. J Mol Evol. 2009;69(1):94–114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ballard JWO. Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. J Mol Evol. 2000;51(1):48–63.
Article
CAS
PubMed
Google Scholar
Berthier F, Renaud M, Durand R, Alziari S. RNA mapping on Drosophila mitochondrial DNA: precursors and template strands. Nucleic Acids Res. 1986;14(11):4519–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Jung M, Jeong Seung J, Park Min C, Kim G, Kwon Nam H, Kim Hoi K, Ha Sang H, Ryu Sung H, Kim S. Leucyl-tRNA Synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell. 2012;149(2):410–24.
Article
PubMed
CAS
Google Scholar
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature. 2007;450:736.
Article
CAS
PubMed
Google Scholar
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to Omnigenic. Cell. 2017;169(7):1177–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villa-Cuesta E, Holmbeck MA, Rand DM. Rapamycin increases mitochondrial efficiency by mtDNA-dependent reprogramming of mitochondrial metabolism in Drosophila. J Cell Sci. 2014;127(10):2282–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci. 2015;16(3):4518–59. https://doi.org/10.3389/fgene.2014.00158.
Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet. 2014.5(158):1-18.
Scaglia F, Wong L-JC. Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve. 2008;37(2):150–71.
Article
CAS
PubMed
Google Scholar
Levinger L, Mörl M, Florentz C. Mitochondrial tRNA 3′ end metabolism and human disease. Nucleic Acids Res. 2004;32(18):5430–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wittenhagen LM, Kelley SO. Impact of disease-related mitochondrial mutations on tRNA structure and function. Trends Biochem Sci. 2003;28(11):605–11.
Article
CAS
PubMed
Google Scholar
Kobayashi Y, Momoi MY, Tominaga K, Momoi T, Nihei K, Yanagisawa M, Kagawa Y, Ohta S. A point mutation in the mitochondrial tRNALeu (UUR) gene in melas (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Bioph Res Co. 1990;173(3):816–22.
Article
CAS
Google Scholar
Fu K, Hartlen R, Johns T, Genge A, Karpati G, Shoubridge EA. A novel Heteroplasmic tRNAleu (CUN) mtDNA point mutation in a sporadic patient with mitochondrial Encephalomyopathy segregates rapidly in skeletal muscle and suggests an approach to therapy. Hum Mol Genet. 1996;5(11):1835–40.
Article
CAS
PubMed
Google Scholar
Zsurka G, Schröder R, Kornblum C, Rudolph J, Wiesner RJ, Elger CE, Kunz WS. Tissue dependent co-segregation of the novel pathogenic G12276A mitochondrial tRNA<sup>Leu (CUN)</sup> mutation with the A185G D-loop polymorphism. J Med Genet. 2004;41(12):e124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber K, Wilson JN, Taylor L, Brierley E, Johnson MA, Turnbull DM, Bindoff LA. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle. Am J Hum Genet. 1997;60(2):373–80.
CAS
PubMed
PubMed Central
Google Scholar
Vives-Bauza C, Gamez J, Roig M, Briones P, Cervera C, Solano A, Montoya J, Andreu AL. Exercise intolerance resulting: from a muscle-restricted mutation in the mitochondrial tRNALeu (CUN) gene. Ann Med. 2001;33(7):493–6.
Article
CAS
PubMed
Google Scholar
Zifa E, Theotokis P, Kaminari A, Maridaki H, Leze H, Petsiava E, Mamuris Z, Stathopoulos C. A novel G3337A mitochondrial ND1 mutation related to cardiomyopathy co-segregates with tRNALeu (CUN) A12308G and tRNAThr C15946T mutations. Mitochondrion. 2008;8(3):229–36.
Article
CAS
PubMed
Google Scholar
Kaikkonen MU, Lam MTY, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90(3):430–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155.
Article
CAS
PubMed
Google Scholar
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwong WY, Miller DJ, Ursell E, Wild AE, Wilkins AP, Osmond C, Anthony FW, Fleming TP. Imprinted gene expression in the rat embryo–fetal axis is altered in response to periconceptional maternal low protein diet. Reproduction. 2006;132(2):265.
Article
CAS
PubMed
Google Scholar
Ordovás JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010;7(9):510–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ekengren S, Hultmark D. A family of Turandot-related genes in the humoral stress response of Drosophila. Biochem Bioph Res Co. 2001;284(4):998–1003.
Article
CAS
Google Scholar
Ekengren S, Tryselius Y, Dushay MS, Liu G, Steiner H, Hultmark D. A humoral stress response in Drosophila. Curr Biol. 2001;11(9):714–8.
Article
CAS
PubMed
Google Scholar
Agaisse H, Petersen U-M, Boutros M, Mathey-Prevot B, Perrimon N. Signaling role of Hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell. 2003;5(3):441–50.
Article
CAS
PubMed
Google Scholar
Mar JC, Matigian NA, Mackay-Sim A, Mellick GD, Sue CM, Silburn PA, McGrath JJ, Quackenbush J, Wells CA. Variance of gene expression identifies altered network constraints in neurological disease. PLoS Genet. 2011;7(8):e1002207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Zhang Y, J L, Yu X: Topological characterization of housekeeping genes in human protein-protein interaction network. In: 2014 8th International Conference on Systems Biology (ISB): 24–27 Oct. 2014 2014; 2014: 1–6.
Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 2010;38(suppl_1):D105–10.
Article
CAS
PubMed
Google Scholar
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol. 2011;12(1):33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Porcelli D, Barsanti P, Pesole G, Caggese C. The nuclear OXPHOS genes in insecta: a common evolutionary origin, a common cis-regulatory motif, a common destiny for gene duplicates. BMC Evol Biol. 2007;7(1):215.
Article
PubMed
PubMed Central
CAS
Google Scholar
Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial mRNAs—like members of all families, similar but different. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2010;1797(6):1081–5.
Article
CAS
Google Scholar
Huang W, Massouras A, Inoue Y, Peiffer J, Ramia M, Tarone AM, Turlapati L, Zichner T, Zhu D, Lyman RF, et al. Natural variation in genome architecture among 205 Drosophila melanogaster genetic reference panel lines. Genome Res. 2014;24(7):1193–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protocols. 2012;7(3):562–78.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, et al. Ensembl 2011. Nucleic Acids Res. 2011;39(suppl_1):D800–6.
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome project data P: the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
CAS
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. Bmc Bioinformatics. 2008;9(1):559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Consortium HFA, Paro R, Perrimon N. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science. 2004;303(5659):832–5.
Article
CAS
PubMed
Google Scholar
Chen S, Zhang YE, Long M. New genes in Drosophila quickly become essential. Science. 2010;330(6011):1682–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. Bmc Bioinformatics. 2009;10(1):1–7.
Article
Google Scholar
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team: R: A language and environment for statistical computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2018.