Parry CD, Patra J, Rehm J. Alcohol consumption and non-communicable diseases: epidemiology and policy implications. Addiction. 2011; 106(10):1718–24.
Article
Google Scholar
MacParland SA, Liu JC, Ma X-Z, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, Gupta R. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 2018; 9(1):1–21.
Article
CAS
Google Scholar
Karalliedde J, Gnudi L. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease. Nephrol Dial Transplant. 2014; 31(2):206–13.
Google Scholar
Dünkler A, Rösler R, Kestler HA, Moreno-Andrés D, Johnsson N. SPLIFF: a single-cell method to map protein-protein interactions in time and space. In: Single Cell Protein Analysis. Springer: 2015. p. 151–68.
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018; 50(8):1–14.
Article
CAS
Google Scholar
Saliba A-E, Westermann AJ, Gorski SA, Vogel J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 2014; 42(14):8845–60.
Article
CAS
Google Scholar
Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019; 15(6):8746.
Article
Google Scholar
Trapnell C. Defining cell types and states with single-cell genomics. Genome Res. 2015; 25(10):1491–8.
Article
CAS
Google Scholar
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018; 36(5):411–20.
Article
CAS
Google Scholar
Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Asp Med. 2018; 59:114–22.
Article
CAS
Google Scholar
Delaney C, Schnell A, Cammarata LV, Yao-Smith A, Regev A, Kuchroo VK, Singer M. Combinatorial prediction of marker panels from single-cell transcriptomic data. Mol Syst Biol. 2019; 15(10):9005. https://doi.org/10.15252/msb.20199005.
Article
CAS
Google Scholar
Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, Trapnell C. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019; 566(7745):496–502.
Article
CAS
Google Scholar
Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D, Trombetta JJ. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013; 498(7453):236–40.
Article
CAS
Google Scholar
Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford PA, Xiao M, Eggan E. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017; 546(7658):431–5.
Article
CAS
Google Scholar
Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018; 13(4):599–604.
Article
CAS
Google Scholar
Rostom R, Svensson V, Teichmann SA, Kar G. Computational approaches for interpreting scRNA-seq data. FEBS Letters. 2017; 591(15):2213–25.
Article
CAS
Google Scholar
Aibar S, González-Blas CB, Moerman T, Imrichova H, Hulselmans G, Rambow F, Marine J-C, Geurts P, Aerts J, van den Oord J, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017; 14(11):1083–6.
Article
CAS
Google Scholar
Chan TE, Stumpf MP, Babtie AC. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 2017; 5(3):251–67.
Article
CAS
Google Scholar
Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001; 411(6833):41–2.
Article
CAS
Google Scholar
Estrada E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics. 2006; 6(1):35–40.
Article
CAS
Google Scholar
Ali W, Deane CM, Reinert G. Protein interaction networks and their statistical analysis In: Stumpf MPH, Balding DJ, Girolami M, editors. Handbook of Statistical Systems Biology. Ltd Chichester, UK: John Wiley & Sons: 2011. p. 200–34.
Google Scholar
Sevimoglu T, Arga KY. The role of protein interaction networks in systems biomedicine. Comput Struct Biotechnol J. 2014; 11(18):22–7.
Article
Google Scholar
Guney E, Menche J, Vidal M, Barábasi A-L. Network-based in silico drug efficacy screening. Nat Commun. 2016; 7(1):1–13.
Article
CAS
Google Scholar
Zitnik M, Leskovec J. Predicting multicellular function through multi-layer tissue networks. Bioinformatics. 2017; 33(14):190–8.
Article
CAS
Google Scholar
Davis D, Yaveroğlu ÖN, Malod-Dognin N, Stojmirovic A, Pržulj N. Topology-function conservation in protein–protein interaction networks. Bioinformatics. 2015; 31(10):1632–9.
Article
CAS
Google Scholar
Milenković T, Pržulj N. Uncovering biological network function via graphlet degree signatures. Cancer Inform. 2008; 6:680.
Article
Google Scholar
Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási A-L. Uncovering disease-disease relationships through the incomplete interactome. Science. 2015; 347(6224):1257601.
Article
CAS
Google Scholar
Lewis AC, Jones NS, Porter MA, Deane CM. The function of communities in protein interaction networks at multiple scales. BMC Syst Biol. 2010; 4(1):100.
Article
CAS
Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al. Tissue-based map of the human proteome. Science. 2015; 347(6220):1260419.
Article
CAS
Google Scholar
Androulakis IP, Yang E, Almon RR. Analysis of time-series gene expression data: methods, challenges, and opportunities. Annu Rev Biomed Eng. 2007; 9:205–28.
Article
CAS
Google Scholar
Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, et al. Genetics of gene expression and its effect on disease. Nature. 2008; 452(7186):423–8.
Article
CAS
Google Scholar
Reyna MA, Leiserson MD, Raphael BJ. Hierarchical hotnet: identifying hierarchies of altered subnetworks. Bioinformatics. 2018; 34(17):972–80.
Article
CAS
Google Scholar
Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T. Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics. 2008; 24(13):223–31.
Article
CAS
Google Scholar
Mitra K, Carvunis A-R, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013; 14(10):719–32.
Article
CAS
Google Scholar
Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinformatics. 2012; 13(1):182.
Article
Google Scholar
Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 2006; 34(suppl_1):535–9.
Article
CAS
Google Scholar
Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008; 9(Nov):2579–605.
Google Scholar
Mehta MB, Shewale SV, Sequeira RN, Millar JS, Hand NJ, Rader DJ. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis. J Biol Chem. 2017; 292(25):10444–54.
Article
CAS
Google Scholar
Komposch K, Sibilia M. EGFR signaling in liver diseases. Int J Mol Sci. 2016; 17(1):30.
Article
CAS
Google Scholar
Zheng H, Cai A, Shu Q, Niu Y, Xu P, Li C, Lin L, Gao H. Tissue-specific metabolomics analysis identifies the liver as a major organ of metabolic disorders in amyloid precursor protein/presenilin 1 mice of alzheimer’s disease. J Proteome Res. 2018; 18(3):1218–27.
Article
CAS
Google Scholar
Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 2018; 14(12):2083–103.
Article
CAS
Google Scholar
Chen L, Li J, Zhang J, Dai C, Liu X, Wang J, Gao Z, Guo H, Wang R, Lu S, et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J Hepatol. 2015; 62(1):156–64.
Article
CAS
Google Scholar
Adler M, Korem Kohanim Y, Tendler A, Mayo A, Alon U. Continuum of gene-expression profiles provides spatial division of labor within a differentiated cell type. Cell Syst. 2019; 8(1):43–525. https://doi.org/10.1016/j.cels.2018.12.008.
Article
CAS
Google Scholar
Österreicher CH, Penz-Österreicher M, Grivennikov SI, Guma M, Koltsova EK, Datz C, Sasik R, Hardiman G, Karin M, Brenner DA. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci U S A. 2011; 108(1):308–13.
Article
Google Scholar
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007; 8(2):101–12. https://doi.org/10.1038/nrm2101.
Article
CAS
Google Scholar
Wang J, Gu BJ, Masters CL, Wang Y-J. A systemic view of alzheimer disease—insights from amyloid- β metabolism beyond the brain. Nat Rev Neurol. 2017; 13(10):612.
Article
CAS
Google Scholar
Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V. Withania somnifera reverses alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci U S A. 2012; 109(9):3510–5.
Article
CAS
Google Scholar
Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015; 16(1):241.
Article
CAS
Google Scholar
Menon V. Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data. Brief Funct Genom. 2018; 17(4):240–5.
Article
CAS
Google Scholar
Wang T, Li B, Nelson CE, Nabavi S. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinformatics. 2019; 20(1):40.
Article
Google Scholar
Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics. 2002; 18(suppl_1):233–40.
Article
Google Scholar
Saelens W, Cannoodt R, Saeys Y. A comprehensive evaluation of module detection methods for gene expression data. Nat Commun. 2018; 9(1):1090.
Article
CAS
Google Scholar
Jalili M, Gebhardt T, Wolkenhauer O, Salehzadeh-Yazdi A. Unveiling network-based functional features through integration of gene expression into protein networks. Biochim Biophys Acta Mol basis Dis. 2018; 1864(6):2349–59.
Article
CAS
Google Scholar
Amgalan B, Lee H. WMAXC: a weighted maximum clique method for identifying condition-specific sub-network. PloS ONE. 2014; 9(8):104993.
Article
CAS
Google Scholar
Santoni D, Swiercz A, żmieńko A, Kasprzak M, Blazewicz M, Bertolazzi P, Felici G. An integrated approach (cluster analysis integration method) to combine expression data and protein–protein interaction networks in agrigenomics: application on arabidopsis thaliana. Omics: J Integr Biol. 2014; 18(2):155–65.
Article
CAS
Google Scholar
Luecken MD, Page MJ, Crosby AJ, Mason S, Reinert G, Deane CM. CommWalker: correctly evaluating modules in molecular networks in light of annotation bias. Bioinformatics. 2018; 34(6):994–1000.
Article
CAS
Google Scholar
Zosin L, Khuller S. On directed steiner trees. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms: 2002. p. 59–63, Society for Industrial and Applied Mathematics.
Bozhilova LV, Whitmore AV, Wray J, Reinert G, Deane CM. Measuring rank robustness in scored protein interaction networks. BMC Bioinformatics. 2019; 20(1):446. https://doi.org/10.1186/s12859-019-3036-6.
Article
CAS
Google Scholar
Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8:1–12.
Article
CAS
Google Scholar
Ramachandran P, Dobie R, Wilson-Kanamori J, Dora E, Henderson B, Luu N, Portman J, Matchett K, Brice M, Marwick J, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019; 575(7783):512–8.
Article
CAS
Google Scholar
Aizarani N, Saviano A, Mailly L, Durand S, Herman JS, Pessaux P, Baumert TF, Grün D, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019; 572(7768):199–204.
Article
CAS
Google Scholar
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015; 33(5):495–502. https://doi.org/10.1038/nbt.3192.
Article
CAS
Google Scholar
Beguerisse-Díaz M, Vangelov B, Barahona M. Finding role communities in directed networks using role-based similarity, Markov stability and the relaxed minimum spanning tree. In: 2013 IEEE Global Conference on Signal and Information Processing: 2013. p. 937–40, IEEE.
Fischetti M, Leitner M, Ljubić I, Luipersbeck M, Monaci M, Resch M, Salvagnin D, Sinnl M. Thinning out Steiner trees: a node-based model for uniform edge costs. Math Program Comput. 2017; 9(2):203–29.
Article
Google Scholar
Leitner M, Ljubić I, Luipersbeck M, Sinnl M. A dual ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems. INFORMS J Comput. 2018; 30(2):402–20.
Article
Google Scholar
Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package version. 2010; 2(0):2010.
Google Scholar
Fisher RA. Statistical methods for research workers In: Kotz S, Johnson NL, editors. Breakthroughs in Statistics. Springer: 1992. p. 66–70.
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30(1):207–10.
Article
CAS
Google Scholar