Saxena RK, Edwards D, Varshney RK. Structural variations in plant genomes. Brief Funct Genom. 2014;13(4):296–307.
Article
Google Scholar
Escaramís G, Docampo E, Rabionet R. A decade of structural variants: description, history and methods to detect structural variation. Brief Funct Genomics. 2015;14(5):305–14.
Article
PubMed
CAS
Google Scholar
Zhang X, Chen X, Liang P, Tang H. Cataloging plant genome structural variations. Curr Issues Mol Biol. 2018:27:181–94.
Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21(3):171–89.
Article
CAS
PubMed
Google Scholar
Wendel JF, Jackson SA, Meyers BC, Wing RA. Evolution of plant genome architecture. Genome Biol. 2016;17(1):1–14.
Article
CAS
Google Scholar
Gabur I, Chawla HS, Snowdon RJ, Parkin IAP. Connecting genome structural variation with complex traits in crop plants. Theor Appl Genet. 2019;132(3):733–50.
Article
PubMed
Google Scholar
Schiessl S-V, Katche E, Ihien E, Chawla HS, Mason AS. The role of genomic structural variation in the genetic improvement of polyploid crops. Crop Journal. 2019;7(2):127–40.
Article
Google Scholar
Voichek Y, Weigel D. Identifying genetic variants underlying phenotypic variation in plants without complete genomes. Nat Genet. 2020;52(5):534–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muñoz-Amatriaín M, Eichten SR, Wicker T, Richmond TA, Mascher M, Steuernagel B, et al. Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol. 2013;14(6):R58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dolatabadian A, Patel DA, Edwards D, Batley J. Copy number variation and disease resistance in plants. Theor Appl Genet. 2017;130(12):2479–90.
Article
CAS
PubMed
Google Scholar
Fuentes RR, Chebotarov D, Duitama J, Smith S, De la Hoz JF, Mohiyuddin M, et al. Structural variants in 3000 rice genomes. Genome Res. 2019;29(5):870–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao Y, Zhao X, Mace E, Henry R, Jordan D. Exploring and exploiting Pan-genomics for crop improvement. Mol Plant. 2019;12(2):156–69.
Article
CAS
PubMed
Google Scholar
Wei H, Liu J, Guo Q, Pan L, Chai S, Cheng Y, et al. Genomic organization and comparative phylogenic analysis of NBS-LRR resistance gene family in Solanum pimpinellifolium and Arabidopsis thaliana. Evol Bioinformatics Online. 2020;16:1176934320911055.
Google Scholar
Prunier J, Caron S, MacKay J. CNVs into the wild: screening the genomes of conifer trees (Picea spp.) reveals fewer gene copy number variations in hybrids and links to adaptation. BMC Genomics. 2017;18(1):97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prunier J, Giguère I, Ryan N, Guy R, Soolanayakanahally R, Isabel N, et al. Gene copy number variations involved in balsam poplar ( Populus balsamifera L.) adaptive variations. Mol Ecol. 2019;28(6):1476–90.
Article
CAS
PubMed
Google Scholar
Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet. 2015;47(8):944–8.
Article
CAS
PubMed
Google Scholar
Gong C, Du Q, Xie J, Quan M, Chen B, Zhang D. Dissection of Insertion–Deletion Variants within Differentially Expressed Genes Involved in Wood Formation in Populus. Front Plant Sci [Internet]. 2018; [cited 2019 Aug 20];8. Available from: https://www.frontiersin.org/articles/10.3389/fpls.2017.02199/full?report=reader.
Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet. 2019;51(6):1044.
Article
CAS
PubMed
Google Scholar
Tranchant-Dubreuil C, Rouard M, Sabot F. Plant pangenome: impacts on phenotypes and evolution. Ann Plant Rev. 2019; May [cited 2021 Feb 11]; Available from: https://hal.archives-ouvertes.fr/hal-02053647.
Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK. Super-Pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 2020;25(2):148–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Li Y, Zheng H, Luo R, Zhu H, Li Q, et al. Building the sequence map of the human pan-genome. Nat Biotechnol. 2010;28(1):57–63.
Article
CAS
PubMed
Google Scholar
Sherman RM, Forman J, Antonescu V, Puiu D, Daya M, Rafaels N, et al. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat Genet. 2019;51(1):30–5.
Article
CAS
PubMed
Google Scholar
Duan Z, Qiao Y, Lu J, Lu H, Zhang W, Yan F, et al. HUPAN: a pan-genome analysis pipeline for human genomes. Genome Biol. 2019;20(1):149.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiao W-B, Schneeberger K. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nat Commun. 2020;11(1):989.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song J-M, Guan Z, Hu J, Guo C, Yang Z, Wang S, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants. 2020;6(1):34–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y, et al. Maize Inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet. 2009;5(11):e1000734.
Article
PubMed
PubMed Central
CAS
Google Scholar
Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, et al. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res. 2010;20(12):1689–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hwang JE, Kim S-H, Jung IJ, Han SM, Ahn J-W, Kwon S-J, et al. Comparative genomic hybridization analysis of rice dwarf mutants induced by gamma irradiation. Genet Mol Res. 2016;15(4):gmr15049092.
Mabire C, Duarte J, Darracq A, Pirani A, Rimbert H, Madur D, et al. High throughput genotyping of structural variations in a complex plant genome using an original Affymetrix® axiom® array. BMC Genomics. 2019;20(1):848.
Article
PubMed
PubMed Central
CAS
Google Scholar
Redmond SN, Sharma A, Sharakhov I, Tu Z, Sharakhova M, Neafsey DE. Linked-read sequencing identifies abundant microinversions and introgression in the arboviral vector Aedes aegypti. BMC Biol. 2020;18(1):26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteomics Bioinform. 2015;13(5):278–89.
Article
Google Scholar
Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequencing and genome assembly. Genom Proteomics Bioinform. 2016;14(5):265–79.
Article
Google Scholar
Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol. 2019;20(1):246.
Article
PubMed
PubMed Central
Google Scholar
Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 2017;27(5):677–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C, Berger B. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun. 2019;10(1):1784.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beyter D, Ingimundardottir H, Oddsson A, Eggertsson HP, Bjornsson E, Jonsson H, et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat Genet. 2021;10:1–8.
Google Scholar
Zapata L, Ding J, Willing E-M, Hartwig B, Bezdan D, Jiao W-B, et al. Chromosome-level assembly of Arabidopsis thaliana L er reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci. 2016;113(28):E4052–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, Lanz C, et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun. 2018;9(1):541.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jupe F, Rivkin AC, Michael TP, Zander M, Motley ST, Sandoval JP, et al. The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet [Internet]. 2019;15(1) Jan 18 [cited 2021 May 20]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338467/.
Pucker B, Kleinbölting N, Weisshaar B. Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are caused by T-DNA insertion mutagenesis [internet]. Plant Biol. 2021; Mar [cited 2021 Mar 8]. Available from: http://biorxiv.org/lookup/doi/10.1101/2021.03.03.433755.
Belser C, Istace B, Denis E, Dubarry M, Baurens F-C, Falentin C, et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants. 2018;4(11):879–87.
Article
CAS
PubMed
Google Scholar
Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet. 2018;50(9):1289–95.
Article
CAS
PubMed
Google Scholar
Dumschott K, Schmidt MH-W, Chawla HS, Snowdon R, Usadel B. Oxford Nanopore sequencing: new opportunities for plant genomics? Raines C, editor. J Exp Bot. 2020;71(18):5313–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol. 2012;30(8):771–6.
Article
CAS
PubMed
Google Scholar
Cao H, Hastie AR, Cao D, Lam ET, Sun Y, Huang H, et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. GigaSci. 2014;3(1):34.
Article
Google Scholar
Levy-Sakin M, Pastor S, Mostovoy Y, Li L, Leung AKY, McCaffrey J, et al. Genome maps across 26 human populations reveal population-specific patterns of structural variation. Nat Commun. 2019;10(1):1025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leung AK-Y, Liu MC-J, Li L, Lai YY-Y, Chu C, Kwok P-Y, et al. OMMA enables population-scale analysis of complex genomic features and phylogenomic relationships from nanochannel-based optical maps. Gigascience. 2019;8(7) 1 [cited 2019 Sep 24]. Available from: https://academic.oup.com/gigascience/article/8/7/giz079/5530323.
Soto DC, Shew C, Mastoras M, Schmidt JM, Sahasrabudhe R, Kaya G, et al. Identification of structural variation in chimpanzees using optical mapping and Nanopore sequencing. Genes (Basel). 2020;11(3):276.
Yuan Y, Milec Z, Bayer PE, Vrána J, Doležel J, Edwards D, et al. Large-scale structural variation detection in subterranean clover subtypes using optical mapping. Front Plant Sci. 2018;17(9):971.
Article
Google Scholar
Maestri S, Gambino G, Minio A, Perrone I, Cosentino E, Giovannone B, et al. Genomic structural variation in ‘Nebbiolo’ grapevines at the individual, clonal and cultivar levels. bioRxiv. 2020. https://doi.org/10.1101/2020.10.27.357046.
Dixon JR, Xu J, Dileep V, Zhan Y, Song F, Le VT, et al. Integrative detection and analysis of structural variation in cancer genomes. Nat Genet. 2018;50(10):1388–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long E, Evans C, Chaston J, Udall JA. Genomic structural variations within five continental populations of Drosophila melanogaster. G3 (Bethesda). 2018;8(10):3247–53.
Article
CAS
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sloan DB, Wu Z, Sharbrough J. Correction of persistent errors in Arabidopsis reference mitochondrial genomes. Plant Cell. 2018;30(3):525–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. https://doi.org/10.1093/gigascience/giab008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toda N, Rustenholz C, Baud A, Le Paslier M-C, Amselem J, Merdinoglu D, et al. NLGenomeSweeper: A Tool for Genome-Wide NBS-LRR Resistance Gene Identification. Genes (Basel). 2020;11(3) 20 [cited 2021 Apr 12]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141099/.
Vaser R. Rapid Assembler. 2018. https://github.com/lbcb-sci/ra.
Google Scholar
Liu H, Wu S, Li A, Ruan J. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte. 2021. https://doi.org/10.46471/gigabyte.15.
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12. https://doi.org/10.1186/gb-2004-5-2-r12.
Jain M, Tyson J, Loose M, Ip C, Eccles D, O’Grady J, et al. MinION analysis and reference consortium: phase 2 data release and analysis of R9.0 chemistry. F1000Research. 2017;31(6):760.
Article
CAS
Google Scholar
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–26.
Article
CAS
PubMed
Google Scholar
Goel M, Sun H, Jiao W-B, Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20(1):277.
Article
PubMed
PubMed Central
Google Scholar
Pucker B, Holtgräwe D, Stadermann KB, Frey K, Huettel B, Reinhardt R, et al. A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set. PLoS One. 2019;14(5):e0216233.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stupar RM, Lilly JW, Town CD, et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. PNAS. 2001;98(9):5099–103. https://doi.org/10.1073/pnas.091110398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408(6814):796–815.
Article
Google Scholar
Zmienko A, Marszalek-Zenczak M, Wojciechowski P, Samelak-Czajka A, Luczak M, Kozlowski P, et al. AthCNV: a map of DNA copy number variations in the Arabidopsis genome [OPEN]. Plant Cell. 2020;32(6):1797–819.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell. 2003;15(4):809–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song Y, Ling N, Ma J, Wang J, Zhu C, Raza W, et al. Grafting resulted in a distinct proteomic profile of watermelon root exudates relative to the un-grafted watermelon and the rootstock plant. J Plant Growth Regul. 2016;35(3):778–91.
Article
CAS
Google Scholar
Staal J, Kaliff M, Bohman S, Dixelius C. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J. 2006;46(2):218–30.
Article
CAS
PubMed
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin M, Fang J, Hu C, Qi X, Sun S, Chen J, et al. Genome-wide DNA polymorphisms in four Actinidia arguta genotypes based on whole-genome re-sequencing. PLoS One. 2020;15(4):e0219884.
Article
CAS
PubMed
PubMed Central
Google Scholar