Walser CB, Lipshitz HD. Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev. 2011;21(4):431–43.
Article
CAS
PubMed
Google Scholar
Deng M, Liu Z, Ren C, Zhang G, Pang J, Zhang Y, et al. Long noncoding RNAs exchange during zygotic genome activation in goat. Biol Reprod. 2018;99(4):707–17.
Article
PubMed
Google Scholar
Abe KI, Funaya S, Tsukioka D, Kawamura M, Suzuki Y, Suzuki MG, et al. Minor zygotic gene activation is essential for mouse preimplantation development. Proc Natl Acad Sci U S A. 2018;115(29):E6780–e6788.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng M, Chen B, Yang Y, Wan Y, Liu Z, Fu J, et al. Characterization of transcriptional activity during ZGA in mammalian SCNT embryo. Biol Reprod. 2021;105(4):905–17.
Article
PubMed
Google Scholar
Veenstra GJ, Destrée OH, Wolffe AP. Translation of maternal TATA-binding protein mRNA potentiates basal but not activated transcription in Xenopus embryos at the midblastula transition. Mol Cell Biol. 1999;19(12):7972–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tora L, Vincent SD. What defines the maternal transcriptome? Biochem Soc Trans. 2021;49(5):2051–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almouzni G, Wolffe AP. Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus embryogenesis. EMBO J. 1995;14(8):1752–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang HL, Nien CY, Liu HY, Metzstein MM, Kirov N, Rushlow C. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature. 2008;456(7220):400–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leichsenring M, Maes J, Mössner R, Driever W, Onichtchouk D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science (New York, NY). 2013;341(6149):1005–9.
Article
CAS
Google Scholar
Hendrickson PG, Doráis JA, Grow EJ, Whiddon JL, Lim JW, Wike CL, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet. 2017;49(6):925–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Iaco A, Coudray A, Duc J, Trono D. DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep. 2019;20(5):e47382.
PubMed
PubMed Central
Google Scholar
Eckersley-Maslin M, Alda-Catalinas C, Blotenburg M, Kreibich E, Krueger C, Reik W. Dppa2 and Dppa4 directly regulate the dux-driven zygotic transcriptional program. Genes Dev. 2019;33(3–4):194–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao L, Wu K, Liu Z, Yao X, Yuan S, Tao W, et al. Chromatin accessibility landscape in human early embryos and its association with evolution. Cell. 2018;173(1):248–259.e215.
Article
CAS
PubMed
Google Scholar
Liu L, Leng L, Liu C, Lu C, Yuan Y, Wu L, et al. An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat Commun. 2019;10(1):364.
Article
PubMed
PubMed Central
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.
Article
CAS
PubMed
Google Scholar
Liu X, Chen L, Wang T, Zhou J, Li Z, Bu G, et al. TDG is a pig-specific epigenetic regulator with insensitivity to H3K9 and H3K27 demethylation in nuclear transfer embryos. Stem cell reports. 2021;16(11):2674–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srirattana K, Kaneda M, Parnpai R. Strategies to improve the efficiency of somatic cell nuclear transfer. Int J Mol Sci. 2022;23(4):1969.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skrzyszowska M, Smorag Z, Słomski R, Katska-Ksiazkiewicz L, Kalak R, Michalak E, et al. Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol Reprod. 2006;74(6):1114–20.
Article
CAS
PubMed
Google Scholar
Zhang X, Gao S, Liu X. Advance in the role of epigenetic reprogramming in somatic cell nuclear transfer-mediated embryonic development. Stem Cells Int. 2021;2021:6681337.
Article
PubMed
PubMed Central
Google Scholar
Samiec M, Skrzyszowska M. Extranuclear inheritance of mitochondrial genome and epigenetic Reprogrammability of chromosomal telomeres in somatic cell cloning of mammals. Int J Mol Sci. 2021;22(6):3099.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opiela J, Samiec M, Romanek J. In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology. 2017;97:27–33.
Article
CAS
PubMed
Google Scholar
Kim SJ, Kwon HS, Kwon DK, Koo OJ, Moon JH, Park EJ, et al. Production of transgenic porcine embryos reconstructed with induced pluripotent stem-like cells derived from porcine endogenous factors using piggyBac system. Cell Reprogram. 2019;21(1):26–36.
Article
CAS
PubMed
Google Scholar
Skrzyszowska M, Samiec M, Słomski R, Lipiński D, Mały E. Development of porcine transgenic nuclear-transferred embryos derived from fibroblast cells transfected by the novel technique of nucleofection or standard lipofection. Theriogenology. 2008;70(2):248–59.
Article
CAS
PubMed
Google Scholar
Zheng H, Huang B, Zhang B, Xiang Y, Du Z, Xu Q, et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell. 2016;63(6):1066–79.
Article
CAS
PubMed
Google Scholar
Chung YG, Matoba S, Liu Y, Eum JH, Lu F, Jiang W, et al. Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell. 2015;17(6):758–66.
Article
CAS
PubMed
Google Scholar
Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, et al. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics. 2014;15(1):4.
Article
PubMed
PubMed Central
Google Scholar
Jeong PS, Sim BW, Park SH, Kim MJ, Kang HG, Nanjidsuren T, et al. Chaetocin improves pig cloning efficiency by enhancing epigenetic reprogramming and Autophagic activity. Int J Mol Sci. 2020;21(14):4836.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Zhu Q, Li C, Kou X, Zhao Y, Li Y, et al. Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nat Commun. 2020;11(1):1813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Liu X, Wang C, Gao Y, Gao R, Kou X, et al. Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell discovery. 2016;2:16010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A, et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell. 2014;159(4):884–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature. 2017;547(7664):419–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, et al. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell. 2018;174(1):245.
Article
CAS
PubMed
Google Scholar
Xie B, Zhang H, Wei R, Li Q, Weng X, Kong Q, et al. Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction. 2016;151(1):9–16.
Article
CAS
PubMed
Google Scholar
Ruan D, Peng J, Wang X, Ouyang Z, Zou Q, Yang Y, et al. XIST Derepression in active X chromosome hinders pig somatic cell nuclear transfer. Stem cell reports. 2018;10(2):494–508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keefe D, Kumar M, Kalmbach K. Oocyte competency is the key to embryo potential. Fertil Steril. 2015;103(2):317–22.
Article
PubMed
Google Scholar
Lee MT, Bonneau AR, Giraldez AJ. Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol. 2014;30:581–613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouniol C, Nguyen E, Debey P. Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res. 1995;218(1):57–62.
Article
CAS
PubMed
Google Scholar
Abe K, Yamamoto R, Franke V, Cao M, Suzuki Y, Suzuki MG, et al. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing. EMBO J. 2015;34(11):1523–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamatani T, Carter MG, Sharov AA, Ko MS. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell. 2004;6(1):117–31.
Article
CAS
PubMed
Google Scholar
Lu Z, Hunter T. Degradation of activated protein kinases by ubiquitination. Annu Rev Biochem. 2009;78:435–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta. 2014;1843(1):150–62.
Article
CAS
PubMed
Google Scholar
Vempati RK, Haldar D. DNA damage in the presence of chemical genotoxic agents induce acetylation of H3K56 and H4K16 but not H3K9 in mammalian cells. Mol Biol Rep. 2012;39(1):303–8.
Article
CAS
PubMed
Google Scholar
Edwards NL, Fox IH. Disorders associated with purine and pyrimidine metabolism. Spec Top Endocrinol Metab. 1984;6:95–140.
CAS
PubMed
Google Scholar
Micheli V, Sestini S. Inborn errors of purine and pyrimidine metabolism: how much we owe to H. Anne Simmonds. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1233–42.
Article
CAS
PubMed
Google Scholar
Judge A, Dodd MS. Metabolism. Essays Biochem. 2020;64(4):607–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leese HJ. Metabolism of the preimplantation embryo: 40 years on. Reproduction. 2012;143(4):417–27.
Article
CAS
PubMed
Google Scholar
Nagaraj R, Sharpley MS, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell. 2017;168(1–2):210–223.e211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pawlak P, Malyszka N, Szczerbal I, Kolodziejski P. Fatty acid induced lipolysis influences embryo development, gene expression and lipid droplet formation in the porcine cumulus cells†. Biol Reprod. 2020;103(1):36–48.
Article
PubMed
PubMed Central
Google Scholar
Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc. 2015;90(3):927–63.
Article
PubMed
Google Scholar
Brind'Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun. 2015;6:6033.
Article
CAS
PubMed
Google Scholar
Carter B, Ku WL, Kang JY, Hu G, Perrie J, Tang Q, et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat Commun. 2019;10(1):3747.
Article
PubMed
PubMed Central
Google Scholar
Ai S, Xiong H, Li CC, Luo Y, Shi Q, Liu Y, et al. Profiling chromatin states using single-cell itChIP-seq. Nat Cell Biol. 2019;21(9):1164–72.
Article
CAS
PubMed
Google Scholar
Johnson HE, Toettcher JE. Signaling dynamics control cell fate in the early Drosophila embryo. Dev Cell. 2019;48(3):361–370.e363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wöhr M, Dahlhoff M, Wolf E, Holsboer F, Schwarting RK, Wotjak CT. Effects of genetic background, gender, and early environmental factors on isolation-induced ultrasonic calling in mouse pups: an embryo-transfer study. Behav Genet. 2008;38(6):579–95.
Article
PubMed
Google Scholar
Chen Z, Zhang Y. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development. Nat Genet. 2019;51(6):947–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu F, Liu Y, Inoue A, Suzuki T, Zhao K, Zhang Y. Establishing chromatin regulatory landscape during mouse preimplantation development. Cell. 2016;165(6):1375–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Xu J, Liu B, Yao G, Wang P, Lin Z, et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature. 2018;557(7704):256–60.
Article
CAS
PubMed
Google Scholar
Bogliotti YS, Chung N, Paulson EE, Chitwood J, Halstead M, Kern C, et al. Transcript profiling of bovine embryos implicates specific transcription factors in the maternal-to-embryo transition. Biol Reprod. 2020;102(3):671–9.
Article
PubMed
Google Scholar
Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.
Article
CAS
PubMed
Google Scholar
van der Weijden VA, Schmidhauser M, Kurome M, Knubben J, Flöter VL, Wolf E, et al. Transcriptome dynamics in early in vivo developing and in vitro produced porcine embryos. BMC Genomics. 2021;22(1):139.
Article
PubMed
PubMed Central
Google Scholar
Xie D, Chen CC, Ptaszek LM, Xiao S, Cao X, Fang F, et al. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res. 2010;20(6):804–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai Y, Zhang Z, Yu H, Su L, Yao G, Ma X, et al. Dynamic methylation changes of DNA and H3K4 by RG108 improve epigenetic reprogramming of somatic cell nuclear transfer embryos in pigs. Cell Physiol Biochem. 2018;50(4):1376–97.
Article
CAS
PubMed
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
Article
PubMed
PubMed Central
Google Scholar
Kaeberlein M, Powers RW 3rd. Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev. 2007;6(2):128–40.
Article
CAS
PubMed
Google Scholar
Zhai Y, Zhang M, An X, Zhang S, Kong X, Li Q, et al. TRIM28 maintains genome imprints and regulates development of porcine SCNT embryos. Reproduction. 2021;161(4):411–24.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar