Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008, 320 (5881): 1344-1349. 10.1126/science.1158441.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilhelm B, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett C, Rogers J, Bähler J: Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature. 2008, 453 (7199): 1239-1243. 10.1038/nature07002.
Article
CAS
PubMed
Google Scholar
Lister R, O'Malley R, Tonti-Filippini J, Gregory B, Berry C, Millar A, Ecker J: Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008, 133 (3): 523-536. 10.1016/j.cell.2008.03.029.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mortazavi A, Williams B, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5 (7): 621-628. 10.1038/nmeth.1226.
Article
CAS
PubMed
Google Scholar
Johnson D, Mortazavi A, Myers R, Wold B: Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007, 316 (5830): 1497-1502. 10.1126/science.1141319.
Article
CAS
PubMed
Google Scholar
Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith O, He A, Marra M, Snyder M, Jones S: Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods. 2007, 4 (8): 651-657. 10.1038/nmeth1068.
Article
CAS
PubMed
Google Scholar
Srivatsan A, Han Y, Peng J, Tehranchi A, Gibbs R, Wang J, Chen R: High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet. 2008, 4 (8): e1000139-10.1371/journal.pgen.1000139.
Article
PubMed Central
PubMed
Google Scholar
Holt K, Parkhill J, Mazzoni C, Roumagnac P, Weill F, Goodhead I, Rance R, Baker S, Maskell D, Wain J, Dolecek C, Achtman M, Dougan G: High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet. 2008, 40 (8): 987-993. 10.1038/ng.195.
Article
PubMed Central
CAS
PubMed
Google Scholar
Church G, Kieffer-Higgins S: Multiplex DNA sequencing. Science. 1988, 240 (4849): 185-188. 10.1126/science.3353714.
Article
CAS
PubMed
Google Scholar
Meyer M, Stenzel U, Myles S, Prüfer K, Hofreiter M: Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res. 2007, 35 (15): e97-10.1093/nar/gkm566.
Article
PubMed Central
PubMed
Google Scholar
Wederell E, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, Zhao Y, Zeng T, Bernier B, Ingham M, Hirst M, Robertson G, Marra M, Jones S, Hoodless P: Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res. 2008, 36 (14): 4549-4564. 10.1093/nar/gkn382.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robertson A, Bilenky M, Tam A, Zhao Y, Zeng T, Thiessen N, Cezard T, Fejes A, Wederell E, Cullum R, Euskirchen G, Krzywinski M, Birol I, Snyder M, Hoodless P, Hirst M, Marra M, Jones S: Genome wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res. 2008
Google Scholar
Alekseyenko A, Peng S, Larschan E, Gorchakov A, Lee O, Kharchenko P, McGrath S, Wang C, Mardis E, Park P, Kuroda M: A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell. 2008, 134 (4): 599-609. 10.1016/j.cell.2008.06.033.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barski A, Cuddapah S, Cui K, Roh T, Schones D, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129 (4): 823-837. 10.1016/j.cell.2007.05.009.
Article
CAS
PubMed
Google Scholar
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V, Wong E, Orlov Y, Zhang W, Jiang J, Loh Y, Yeo H, Yeo Z, Narang V, Govindarajan K, Leong B, Shahab A, Ruan Y, Bourque G, Sung W, Clarke N, Wei C, Ng H: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008, 133 (6): 1106-1117. 10.1016/j.cell.2008.04.043.
Article
CAS
PubMed
Google Scholar
Meluh P, Yang P, Glowczewski L, Koshland D, Smith M: Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell. 1998, 94 (5): 607-613. 10.1016/S0092-8674(00)81602-5.
Article
CAS
PubMed
Google Scholar
Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P: Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol. 2004, 24 (15): 6620-6630. 10.1128/MCB.24.15.6620-6630.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Keith K, Fitzgerald-Hayes M: CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere dna around a cse4p variant nucleosome. Genetics. 2000, 156 (3): 973-981.
PubMed Central
CAS
PubMed
Google Scholar
Camahort R, Li B, Florens L, Swanson S, Washburn M, Gerton J: Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell. 2007, 26 (6): 853-865. 10.1016/j.molcel.2007.05.013.
Article
CAS
PubMed
Google Scholar
Mizuguchi G, Xiao H, Wisniewski J, Smith M, Wu C: Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell. 2007, 129 (6): 1153-1164. 10.1016/j.cell.2007.04.026.
Article
CAS
PubMed
Google Scholar
Stoler S, Rogers K, Weitze S, Morey L, Fitzgerald-Hayes M, Baker R: Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci USA. 2007, 104 (25): 10571-10576. 10.1073/pnas.0703178104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang W, Mellone B, Karpen G: A specialized nucleosome has a "point" to make. Cell. 2007, 129 (6): 1047-1049. 10.1016/j.cell.2007.05.054.
Article
PubMed Central
CAS
PubMed
Google Scholar
Collins K, Castillo A, Tatsutani S, Biggins S: De novo kinetochore assembly requires the centromeric histone H3 variant. Mol Biol Cell. 2005, 16 (12): 5649-5660. 10.1091/mbc.E05-08-0771.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krude T: Chromatin assembly: the kinetochore connection. Curr Biol. 2002, 12 (7): R256-258. 10.1016/S0960-9822(02)00786-8.
Article
CAS
PubMed
Google Scholar
Smith M, Yang P, Santisteban M, Boone P, Goldstein A, Megee P: A novel histone H4 mutant defective in nuclear division and mitotic chromosome transmission. Mol Cell Biol. 1996, 16 (3): 1017-1026.
Article
PubMed Central
CAS
PubMed
Google Scholar
Westermann S, Cheeseman I, Anderson S, Yates Jr, Drubin D, Barnes G: Architecture of the budding yeast kinetochore reveals a conserved molecular core. J Cell Biol. 2003, 163 (2): 215-222. 10.1083/jcb.200305100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Au W, Crisp M, DeLuca S, Rando O, Basrai M: Altered dosage and mislocalization of histone H3 and Cse4p lead to chromosome loss in Saccharomyces cerevisiae. Genetics. 2008, 179 (1): 263-275. 10.1534/genetics.108.088518.
Article
PubMed Central
CAS
PubMed
Google Scholar
Collins K, Camahort R, Seidel C, Gerton J, Biggins S: The overexpression of a Saccharomyces cerevisiae centromeric histone H3 variant mutant protein leads to a defect in kinetochore biorientation. Genetics. 2007, 175 (2): 513-525. 10.1534/genetics.106.064410.
Article
PubMed Central
CAS
PubMed
Google Scholar
Errede B, Ammerer G: STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev. 1989, 3 (9): 1349-1361. 10.1101/gad.3.9.1349.
Article
CAS
PubMed
Google Scholar
Madhani H, Fink G: Combinatorial control required for the specificity of yeast MAPK signaling. Science. 1997, 275 (5304): 1314-1317. 10.1126/science.275.5304.1314.
Article
CAS
PubMed
Google Scholar
Roberts R, Fink G: Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 1994, 8 (24): 2974-2985. 10.1101/gad.8.24.2974.
Article
CAS
PubMed
Google Scholar
Chou S, Lane S, Liu H: Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol. 2006, 26 (13): 4794-4805. 10.1128/MCB.02053-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Köhler T, Wesche S, Taheri N, Braus G, Mösch H: Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryot Cell. 2002, 1 (5): 673-686. 10.1128/EC.1.5.673-686.2002.
Article
PubMed Central
PubMed
Google Scholar
Pan X, Heitman J: Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. 1999, 19 (7): 4874-4887.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rupp S, Summers E, Lo H, Madhani H, Fink G: MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 1999, 18 (5): 1257-1269. 10.1093/emboj/18.5.1257.
Article
PubMed Central
CAS
PubMed
Google Scholar
Borneman A, Leigh-Bell J, Yu H, Bertone P, Gerstein M, Snyder M: Target hub proteins serve as master regulators of development in yeast. Genes Dev. 2006, 20 (4): 435-448. 10.1101/gad.1389306.
Article
PubMed Central
CAS
PubMed
Google Scholar
Borneman A, Gianoulis T, Zhang Z, Yu H, Rozowsky J, Seringhaus M, Wang L, Gerstein M, Snyder M: Divergence of transcription factor binding sites across related yeast species. Science. 2007, 317 (5839): 815-819. 10.1126/science.1140748.
Article
CAS
PubMed
Google Scholar
Oehlen L, Cross F: The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae. FEBS Lett. 1998, 429 (1): 83-88. 10.1016/S0014-5793(98)00568-7.
Article
CAS
PubMed
Google Scholar
Chou S, Huang L, Liu H: Fus3-regulated Tec1 degradation through SCFCdc4 determines MAPK signaling specificity during mating in yeast. Cell. 2004, 119 (7): 981-990. 10.1016/j.cell.2004.11.053.
Article
CAS
PubMed
Google Scholar
Chou S, Zhao S, Song Y, Liu H, Nie Q: Fus3-triggered Tec1 degradation modulates mating transcriptional output during the pheromone response. Mol Syst Biol. 2008, 4: 212-10.1038/msb.2008.47.
Article
PubMed Central
PubMed
Google Scholar
Ren B, Robert F, Wyrick J, Aparicio O, Jennings E, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert T, Wilson C, Bell S, Young R: Genome-wide location and function of DNA binding proteins. Science. 2000, 290 (5500): 2306-2309. 10.1126/science.290.5500.2306.
Article
CAS
PubMed
Google Scholar
Hung W, Olson K, Breitkreutz A, Sadowski I: Characterization of the basal and pheromone-stimulated phosphorylation states of Ste12p. Eur J Biochem. 1997, 245 (2): 241-251. 10.1111/j.1432-1033.1997.00241.x.
Article
CAS
PubMed
Google Scholar
Kusari A, Molina D, Sabbagh WJ, Lau C, Bardwell L: A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1. J Cell Biol. 2004, 164 (2): 267-277. 10.1083/jcb.200310021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nelson C, Goto S, Lund K, Hung W, Sadowski I: Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature. 2003, 421 (6919): 187-190. 10.1038/nature01243.
Article
CAS
PubMed
Google Scholar
Song D, Dolan J, Yuan Y, Fields S: Pheromone-dependent phosphorylation of the yeast STE12 protein correlates with transcriptional activation. Genes Dev. 1991, 5 (5): 741-750. 10.1101/gad.5.5.741.
Article
CAS
PubMed
Google Scholar
Wang Y, Dohlman H: Pheromone-regulated sumoylation of transcription factors that mediate the invasive to mating developmental switch in yeast. J Biol Chem. 2006, 281 (4): 1964-1969. 10.1074/jbc.M508985200.
Article
CAS
PubMed
Google Scholar
Young R: RNA polymerase II. Annu Rev Biochem. 1991, 60: 689-715. 10.1146/annurev.bi.60.070191.003353.
Article
CAS
PubMed
Google Scholar
Hampsey M: Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev. 1998, 62 (2): 465-503.
PubMed Central
CAS
PubMed
Google Scholar
Miyao T, Woychik N: RNA polymerase subunit RPB5 plays a role in transcriptional activation. Proc Natl Acad Sci USA. 1998, 95 (26): 15281-15286. 10.1073/pnas.95.26.15281.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tardiff D, Abruzzi K, Rosbash M: Protein characterization of Saccharomyces cerevisiae RNA polymerase II after in vivo cross-linking. Proc Natl Acad Sci USA. 2007, 104 (50): 19948-19953. 10.1073/pnas.0710179104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harismendy O, Gendrel C, Soularue P, Gidrol X, Sentenac A, Werner M, Lefebvre O: Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J. 2003, 22 (18): 4738-4747. 10.1093/emboj/cdg466.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moqtaderi Z, Struhl K: Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol Cell Biol. 2004, 24 (10): 4118-4127. 10.1128/MCB.24.10.4118-4127.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roberts D, Stewart A, Huff J, Cairns B: The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc Natl Acad Sci USA. 2003, 100 (25): 14695-14700. 10.1073/pnas.2435566100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Steinmetz E, Warren C, Kuehner J, Panbehi B, Ansari A, Brow D: Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell. 2006, 24 (5): 735-746. 10.1016/j.molcel.2006.10.023.
Article
CAS
PubMed
Google Scholar
Hamming RW: Error Detecting and Error Correcting Codes. Bell System technical journal. 1950, 26 (2): 147-160.
Article
Google Scholar
Harbison C, Gordon D, Lee T, Rinaldi N, Macisaac K, Danford T, Hannett N, Tagne J, Reynolds D, Yoo J, Jennings E, Zeitlinger J, Pokholok D, Kellis M, Rolfe P, Takusagawa K, Lander E, Gifford D, Fraenkel E, Young R: Transcriptional regulatory code of a eukaryotic genome. Nature. 2004, 431 (7004): 99-104. 10.1038/nature02800.
Article
PubMed Central
CAS
PubMed
Google Scholar
The modENCODE Project: Model Organism ENCyclopedia Of DNA Elements (modENCODE). [http://www.modencode.org/]
Edgar R, Domrachev M, Lash A: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30 (1): 207-210. 10.1093/nar/30.1.207.
Article
PubMed Central
CAS
PubMed
Google Scholar
NCBI Gene Expression Omnibus, Series GSE13322. [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13322]
Aparicio O, Geisberg J, Struhl K: Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Cell Biol. 2004, Chapter 17: Unit 17.17
Google Scholar
Pfaffl M: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29 (9): e45-10.1093/nar/29.9.e45.
Article
PubMed Central
CAS
PubMed
Google Scholar
Euskirchen G, Rozowsky J, Wei C, Lee W, Zhang Z, Hartman S, Emanuelsson O, Stolc V, Weissman S, Gerstein M, Ruan Y, Snyder M: Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 2007, 17 (6): 898-909. 10.1101/gr.5583007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rozowsky J, Euskirchen G, Auerbach R, Zhang Z, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein M: PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol. 2009, 27: 66-75. 10.1038/nbt.1518.
Article
PubMed Central
CAS
PubMed
Google Scholar
NCBI Gene Expression Omnibus, Series GSE6293. [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6293]