Pallafacchina G, Blaauw B, Schiaffino S: Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr Metab Cardiovasc Dis. 2012, 1-7. In Press
Google Scholar
Seiliez I, Panserat S, Lansard M, Polakof S, Plagnes-Juan E, Surget A, Dias K, Larquier M, Kaushik S, Skiba-Cassy S: Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal. Am J Physiol Regul Integr Comp Physiol. 2011, 300: R733-R743. 10.1152/ajpregu.00579.2010.
CAS
PubMed
Google Scholar
Johnston IA, Bower NI, Macqueen DJ: Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol. 2011, 214: 1617-1628. 10.1242/jeb.038620.
CAS
PubMed
Google Scholar
Skiba-Cassy S, Lansard M, Panserat S, Médale F: Rainbow trout genetically selected for greater muscle fat content display increased activation of liver TOR signaling and lipogenic gene expression. Am J Physiol Regul Integr Comp Physiol. 2009, 297: R1421-R1429. 10.1152/ajpregu.00312.2009.
CAS
PubMed
Google Scholar
Hay N, Sonenberg N: Upstream and downstream of mTOR. Genes Dev. 2004, 18: 1926-1945. 10.1101/gad.1212704.
CAS
PubMed
Google Scholar
Cao PR, Kim HJ, Lecker SH: Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol. 2005, 37: 2088-2097. 10.1016/j.biocel.2004.11.010.
CAS
PubMed
Google Scholar
Knecht E, Aguado C, Cárcel J, Esteban I, Esteve JM, Ghislat G, Moruno JF, Vidal JM, Sáez R: Intracellular protein degradation in mammalian cells: recent developments. Cell Mol Life Sci. 2009, 66: 2427-2443. 10.1007/s00018-009-0030-6.
CAS
PubMed
Google Scholar
Bonaldo P, Sandri M: Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013, 6: 25-39. 10.1242/dmm.010389.
PubMed Central
CAS
PubMed
Google Scholar
Müller S, Dennemärker J, Reinheckel T: Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochim Biophys Acta. 1824, 2012: 34-43.
Google Scholar
Li J, Yuan J: Caspases in apoptosis and beyond. Oncogene. 2008, 27: 6194-6206. 10.1038/onc.2008.297.
CAS
PubMed
Google Scholar
Ono Y, Sorimachi H: Calpains: an elaborate proteolytic system. Biochim Biophys Acta. 1824, 2012: 224-236.
Google Scholar
Bower NI, Johnston IA: Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon. PLoS One. 2010, 5: e11100-10.1371/journal.pone.0011100.
PubMed Central
PubMed
Google Scholar
Martin SAM, Blaney S, Bowman AS, Houlihan DF: Ubiquitin-proteasome-dependent proteolysis in rainbow trout (Oncorhynchus mykiss): effect of food deprivation. Pflügers Archiv Eur J Physiol. 2002, 445: 257-266. 10.1007/s00424-002-0916-8.
CAS
Google Scholar
Salem M, Kenney PB, Rexroad CE, Yao J: Proteomic signature of muscle atrophy in rainbow trout. J Proteomics. 2010, 73: 778-789. 10.1016/j.jprot.2009.10.014.
CAS
PubMed
Google Scholar
Overturf K, Gaylord TG: Determination of relative protein degradation activity at different life stages in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol. 2009, 152: 150-160. 10.1016/j.cbpb.2008.10.012.
PubMed
Google Scholar
Seiliez I, Panserat S, Skiba-Cassy S, Fricot A, Vachot C, Kaushik S, Tesseraud S: Feeding status regulates the polyubiquitination step of the ubiquitin-proteasome-dependent proteolysis in rainbow trout (Oncorhynchus mykiss) muscle. J Nutr. 2008, 138: 487-491.
CAS
PubMed
Google Scholar
Gómez-Requeni P, de Vareilles M, Kousoulaki K, Jordal A-EO, Conceição LEC, Rønnestad I: Whole body proteome response to a dietary lysine imbalance in zebrafish Danio rerio. Comp Biochem Physiol D Genomics Proteomics. 2011, 6: 178-186. 10.1016/j.cbd.2011.02.002.
PubMed
Google Scholar
Mommsen TP: Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work. Comp Biochem Physiol B Biochem Mol Biol. 2004, 139: 383-400. 10.1016/j.cbpc.2004.09.018.
PubMed
Google Scholar
Hevrøy EM, Azpeleta C, Shimizu M, Lanzén A, Kaiya H, Espe M, Olsvik PA: Effects of short-term starvation on ghrelin, GH-IGF system, and IGF-binding proteins in Atlantic salmon. Fish Physiol Biochem. 2011, 37: 217-232. 10.1007/s10695-010-9434-3.
PubMed
Google Scholar
Bower NI, Li X, Taylor R, Johnston IA: Switching to fast growth: the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon. J Exp Biol. 2008, 211: 3859-3870. 10.1242/jeb.024117.
CAS
PubMed
Google Scholar
Weil C, Lebret V, Gabillard J-C: The IGF/IGFBP system in rainbow trout (Oncorhynchus mykiss) adipose tissue: expression related to regional localization and cell type. Fish Physiol Biochem. 2011, 37: 843-852. 10.1007/s10695-011-9482-3.
CAS
PubMed
Google Scholar
Cleveland BM, Weber GM: Effects of insulin-like growth factor-I, insulin, and leucine on protein turnover and ubiquitin ligase expression in rainbow trout primary myocytes. Am J Physiol Regul Integr Comp Physiol. 2010, 298: R341-R350. 10.1152/ajpregu.00516.2009.
CAS
PubMed
Google Scholar
Amaral IPG, Johnston IA: Insulin-like growth factor (IGF) signalling and genome-wide transcriptional regulation in fast muscle of zebrafish following a single-satiating meal. J Exp Biol. 2011, 214: 2125-2139. 10.1242/jeb.053298.
CAS
PubMed
Google Scholar
Clemmons DR: Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol Metab. 2009, 20: 349-356. 10.1016/j.tem.2009.04.002.
CAS
PubMed
Google Scholar
Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC: The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab. 2008, 295: E785-E797. 10.1152/ajpendo.00646.2007.
PubMed Central
CAS
PubMed
Google Scholar
O’Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW: Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cell Immunol. 2008, 252: 91-110. 10.1016/j.cellimm.2007.09.010.
PubMed Central
PubMed
Google Scholar
Gabler NK, Spurlock ME: Integrating the immune system with the regulation of growth and efficiency. J Anim Sci. 2008, 86: E64-E74.
CAS
PubMed
Google Scholar
Frost RA, Nystrom GJ, Jefferson LS, Lang CH: Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle. Am J Physiol Endocrinol Metab. 2007, 292: E501-E512.
CAS
PubMed
Google Scholar
Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H: Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011, 13: 170-182. 10.1016/j.cmet.2011.01.001.
CAS
PubMed
Google Scholar
Lecker SH, Goldberg AL, Mitch WE: Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006, 17: 1807-1819. 10.1681/ASN.2006010083.
CAS
PubMed
Google Scholar
Li W, Moylan JS, Chambers MA, Smith J, Reid MB: Interleukin-1 stimulates catabolism in C2C12 myotubes. Am J Physiol Cell Physiol. 2009, 297: C706-C714. 10.1152/ajpcell.00626.2008.
PubMed Central
CAS
PubMed
Google Scholar
Tisdale MJ: Mechanisms of cancer cachexia. Physiol Rev. 2009, 89: 381-410. 10.1152/physrev.00016.2008.
CAS
PubMed
Google Scholar
Haddad F, Zaldivar F, Cooper DM, Adams GR: IL-6-induced skeletal muscle atrophy. J Appl Physiol. 2005, 98: 911-917.
CAS
PubMed
Google Scholar
Bakkar N, Wang J, Ladner KJ, Wang H, Dahlman JM, Carathers M, Acharyya S, Rudnicki MA, Hollenbach AD, Guttridge DC: IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J Cell Biol. 2008, 180: 787-802. 10.1083/jcb.200707179.
PubMed Central
CAS
PubMed
Google Scholar
Guttridge DC: NF-κB-induced loss of MyoD messenger RNA: Possible role in muscle decay and cachexia. Science. 2000, 289: 2363-2366. 10.1126/science.289.5488.2363.
CAS
PubMed
Google Scholar
Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS: NF-κ B controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999, 19: 5785-5799.
PubMed Central
CAS
PubMed
Google Scholar
Adams GR: Insulin-like growth factor I signaling in skeletal muscle and the potential for cytokine interactions. Med Sci Sports Exerc. 2010, 42: 50-57.
CAS
PubMed
Google Scholar
Broussard SR, McCusker RH, Novakofski JE, Strle K, Shen W-H, Johnson RW, Freund GG, Dantzer R, Kelley KW: Cytokine-hormone interactions: tumor necrosis factor α impairs biologic activity and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. Endocrinology. 2003, 144: 2988-2996. 10.1210/en.2003-0087.
CAS
PubMed
Google Scholar
Zhang D, Zheng H, Zhou Y, Tang X, Yu B, Li J: Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer. BMC Cancer. 2007, 7: 45-10.1186/1471-2407-7-45.
PubMed Central
PubMed
Google Scholar
Acharyya S, Ladner KJ, Nelsen LL, Damrauer J, Reiser PJ, Swoap S, Guttridge DC: Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest. 2004, 114: 370-378.
PubMed Central
CAS
PubMed
Google Scholar
Martin SAM, Douglas A, Houlihan DF, Secombes CJ: Starvation alters the liver transcriptome of the innate immune response in Atlantic salmon (Salmo salar). BMC Genomics. 2010, 11: 418-10.1186/1471-2164-11-418.
PubMed Central
PubMed
Google Scholar
Bower NI, Taylor RG, Johnston IA: Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon. Front Zool. 2009, 6: 18-10.1186/1742-9994-6-18.
PubMed Central
PubMed
Google Scholar
Salem M, Kenney PB, Rexroad CE, Yao J: Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics. 2006, 28: 33-45. 10.1152/physiolgenomics.00114.2006.
CAS
PubMed
Google Scholar
Johansen KA, Sealey WM, Overturf K: The effects of chronic immune stimulation on muscle growth in rainbow trout. Comp Biochem Physiol B Biochem Mol Biol. 2006, 144: 520-531. 10.1016/j.cbpb.2006.05.006.
PubMed
Google Scholar
Tacchi L, Bickerdike R, Secombes CJ, Pooley NJ, Urquhart KL, Collet B, Martin SAM: Ubiquitin E3 ligase atrogin-1 (Fbox-32) in Atlantic salmon (Salmo salar): sequence analysis, genomic structure and modulation of expression. Comp Biochem Physiol B Biochem Mol Biol. 2010, 157: 364-373. 10.1016/j.cbpb.2010.08.004.
PubMed
Google Scholar
Dinarello CA: Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011, 117: 3720-3732. 10.1182/blood-2010-07-273417.
PubMed Central
CAS
PubMed
Google Scholar
Allantaz F, Chaussabel D, Banchereau J, Pascual V: Microarray-based identification of novel biomarkers in IL-1-mediated diseases. Curr Opin Immunol. 2007, 19: 623-632. 10.1016/j.coi.2007.10.003.
PubMed Central
CAS
PubMed
Google Scholar
Subramaniam S, Stansberg C, Cunningham C: The interleukin 1 receptor family. Dev Comp Immunol. 2004, 28: 415-428. 10.1016/j.dci.2003.09.016.
CAS
PubMed
Google Scholar
Lin W-N, Luo S-F, Lee C-W, Wang C-C, Wang J-S, Yang C-M: Involvement of MAPKs and NF-κB in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells. Cell Signal. 2007, 19: 1258-1267. 10.1016/j.cellsig.2007.01.009.
CAS
PubMed
Google Scholar
Reis MIR, do Vale A, Pereira PJB, Azevedo JE, dos Santos NMS: Caspase-1 and IL-1β processing in a teleost fish. PLoS One. 2012, 7: e50450-10.1371/journal.pone.0050450.
PubMed Central
CAS
PubMed
Google Scholar
Angosto D, López-Castejón G, López-Muñoz A, Sepulcre MP, Arizcun M, Meseguer J, Mulero V: Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Innate Immun. 2012, 18: 815-824. 10.1177/1753425912441956.
PubMed
Google Scholar
Vojtech LN, Scharping N, Woodson JC, Hansen JD: Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection. Infect Immun. 2012, 80: 2878-2885. 10.1128/IAI.00543-12.
PubMed Central
CAS
PubMed
Google Scholar
Husain M, Bird S, van Zwieten R, Secombes CJ, Wang T: Cloning of the IL-1β3 gene and IL-1β4 pseudogene in salmonids uncovers a second type of IL-1β gene in teleost fish. Dev Comp Immunol. 2012, 38: 431-446. 10.1016/j.dci.2012.07.010.
CAS
PubMed
Google Scholar
Morrison RN, Young ND, Nowak BF: Description of an Atlantic salmon (Salmo salar L.) type II interleukin-1 receptor cDNA and analysis of interleukin-1 receptor expression in amoebic gill disease-affected fish. Fish Shellfish Immunol. 2012, 32: 1185-1190. 10.1016/j.fsi.2012.03.005.
CAS
PubMed
Google Scholar
López-Castejón G, Sepulcre MP, Roca FJ, Castellana B, Planas JV, Meseguer J, Mulero V: The type II interleukin-1 receptor (IL-1RII) of the bony fish gilthead seabream Sparus aurata is strongly induced after infection and tightly regulated at transcriptional and post-transcriptional levels. Mol Immunol. 2007, 44: 2772-2780. 10.1016/j.molimm.2006.10.027.
PubMed
Google Scholar
Glass DJ: Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol. 2005, 37: 1974-1984. 10.1016/j.biocel.2005.04.018.
CAS
PubMed
Google Scholar
Hong S, Zou J, Crampe M, Peddie S, Scapigliati G, Bols N, Cunningham C, Secombes CJ: The production and bioactivity of rainbow trout (Oncorhynchus mykiss) recombinant IL-1β. Vet Immunol Immunopathol. 2001, 81: 1-14. 10.1016/S0165-2427(01)00328-2.
CAS
PubMed
Google Scholar
Martin SAM, Zou J, Houlihan DF, Secombes CJ: Directional responses following recombinant cytokine stimulation of rainbow trout (Oncorhynchus mykiss) RTS-11 macrophage cells as revealed by transcriptome profiling. BMC Genomics. 2007, 8: 150-10.1186/1471-2164-8-150.
PubMed Central
PubMed
Google Scholar
Karin M: The IκB kinase (IKK) complex as a critical regulator of immune responses. Int Congr Ser. 2005, 1285: 97-103.
CAS
Google Scholar
Sun SC, Ganchi PA, Ballard DW, Greene WC: NF-kB controls expression of inhibitor IkBa: Evidence for an inducible autoregulatory pathway. Science. 1993, 259: 1912-1915. 10.1126/science.8096091.
CAS
PubMed
Google Scholar
Ueda T, Sasaki M, Elia AJ, Chio IIC, Hamada K, Fukunaga R, Mak TW: Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A. 2010, 107: 1-7.
Google Scholar
Gomard T, Michaud H-A, Tempé D, Thiolon K, Pelegrin M, Piechaczyk M: An NF-κB-dependent role for JunB in the induction of proinflammatory cytokines in LPS-activated bone marrow-derived dendritic cells. PLoS One. 2010, 5: e9585-10.1371/journal.pone.0009585.
PubMed Central
PubMed
Google Scholar
Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, Goldberg AL, Sandri M: JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol. 2010, 191: 101-113. 10.1083/jcb.201001136.
PubMed Central
CAS
PubMed
Google Scholar
Wang T, Gorgoglione B, Maehr T, Holland JW, Vecino JLG, Wadsworth S, Secombes CJ: Fish suppressors of cytokine signaling (SOCS): gene discovery, modulation of expression and function. J Signal Transduc. 2011, 2011: 905813-
Google Scholar
Konijn AM, Hershko C: Ferritin Synthesis in Inflammation. Br J Haematol. 1977, 37: 7-16.
CAS
PubMed
Google Scholar
De Domenico I, Zhang TY, Koening CL, Branch RW, London N, Lo E, Daynes RA, Kushner JP, Li D, Ward DM, Kaplan J: Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest. 2010, 120: 2395-2405. 10.1172/JCI42011.
PubMed Central
CAS
PubMed
Google Scholar
Shi J, Camus AC: Hepcidins in amphibians and fishes: Antimicrobial peptides or iron-regulatory hormones?. Dev Comp Immunol. 2006, 30: 746-755. 10.1016/j.dci.2005.10.009.
CAS
PubMed
Google Scholar
Cuesta A, Meseguer J, Esteban MA: The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol Immunol. 2008, 45: 2333-2342. 10.1016/j.molimm.2007.11.007.
CAS
PubMed
Google Scholar
Ewart K, Johnson SC, Ross NW: Lectins of the innate immune system and their relevance to fish health. ICES J Mar Sci. 2001, 58: 380-385. 10.1006/jmsc.2000.1020.
CAS
Google Scholar
Magnadóttir B: Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20: 137-151. 10.1016/j.fsi.2004.09.006.
PubMed
Google Scholar
Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM: Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. Dev Comp Immunol. 2011, 35: 1388-1399. 10.1016/j.dci.2011.08.011.
PubMed Central
CAS
PubMed
Google Scholar
Bayne CJ, Gerwick L, Fujiki K, Nakao M, Yano T: Immune-relevant (including acute phase) genes identified in the livers of rainbow trout, Oncorhynchus mykiss, by means of suppression subtractive hybridization. Dev Comp Immunol. 2001, 25: 205-217. 10.1016/S0145-305X(00)00057-4.
CAS
PubMed
Google Scholar
Salem M, Silverstein J, Rexroad CE, Yao J: Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics. 2007, 8: 328-10.1186/1471-2164-8-328.
PubMed Central
PubMed
Google Scholar
Rescan P-Y, Montfort J, Rallière C, Le Cam A, Esquerré D, Hugot K: Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule. BMC Genomics. 2007, 8: 438-10.1186/1471-2164-8-438.
PubMed Central
PubMed
Google Scholar
Cleveland BM, Weber GM: Effects of sex steroids on indices of protein turnover in rainbow trout (Oncorhynchus mykiss) white muscle. Gen Comp Endocrinol. 2011, 174: 132-142. 10.1016/j.ygcen.2011.08.011.
CAS
PubMed
Google Scholar
Tacchi L, Bickerdike R, Secombes CJ, Martin SAM: Muscle-specific RING finger (MuRF) cDNAs in Atlantic salmon (Salmo salar) and their role as regulators of muscle protein degradation. Mar Biotechnol (New York, N.Y.). 2012, 14: 35-45. 10.1007/s10126-011-9385-4.
CAS
Google Scholar
Benanti JA: Coordination of cell growth and division by the ubiquitin-proteasome system. Semin Cell Dev Biol. 2012, 23: 492-498. 10.1016/j.semcdb.2012.04.005.
PubMed Central
CAS
PubMed
Google Scholar
Le Floc’h N, Melchior D, Obled C: Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livest Prod Sci. 2004, 87: 37-45. 10.1016/j.livprodsci.2003.09.005.
Google Scholar
Riccio M, Di Giaimo R, Pianetti S, Palmieri PP, Melli M, Santi S: Nuclear localization of cystatin B, the cathepsin inhibitor implicated in myoclonus epilepsy (EPM1). Exp Cell Res. 2001, 262: 84-94. 10.1006/excr.2000.5085.
CAS
PubMed
Google Scholar
Liu C, Gersch RP, Hawke TJ, Hadjiargyrou M: Silencing of Mustn1 inhibits myogenic fusion and differentiation. Am J Physiol Cell Physiol. 2010, 298: C1100-C1108. 10.1152/ajpcell.00553.2009.
PubMed Central
CAS
PubMed
Google Scholar
Moyen C, Goudenege S, Poussard S, Sassi AH, Brustis J-J, Cottin P: Involvement of micro-calpain (CAPN 1) in muscle cell differentiation. Int J Biochem Cell Biol. 2004, 36: 728-743. 10.1016/S1357-2725(03)00265-6.
CAS
PubMed
Google Scholar
Lee Y-A, Choi HM, Lee S-H, Hong S-J, Yang H-I, Yoo MC, Kim KS: Hypoxia differentially affects IL-1β-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1α-dependent manner. Rheumatology (Oxford). 2012, 51: 443-450. 10.1093/rheumatology/ker327.
CAS
Google Scholar
Fan Z, Yang H, Bau B, Söder S, Aigner T: Role of mitogen-activated protein kinases and NFκB on IL-1β-induced effects on collagen type II, MMP-1 and 13 mRNA expression in normal articular human chondrocytes. Rheumatol Int. 2006, 26: 900-903. 10.1007/s00296-006-0114-7.
CAS
PubMed
Google Scholar
Tak PP, Firestein GS: NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001, 107: 7-11. 10.1172/JCI11830.
PubMed Central
CAS
PubMed
Google Scholar
Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE, Delafontaine P: Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology. 2001, 142: 1489-1496. 10.1210/en.142.4.1489.
CAS
PubMed
Google Scholar
Russell ST, Wyke SM, Tisdale MJ: Mechanism of induction of muscle protein degradation by angiotensin II. Cell Signal. 2006, 18: 1087-1096. 10.1016/j.cellsig.2005.09.009.
CAS
PubMed
Google Scholar
Duan C, Ren H, Gao S: Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol. 2010, 167: 344-351. 10.1016/j.ygcen.2010.04.009.
CAS
PubMed
Google Scholar
Macqueen DJ, Garcia de la Serrana D, Johnston IA: Evolution of ancient functions in the vertebrate insulin-like growth factor system uncovered by study of duplicated salmonid fish genomes. Mol Biol Evol. 2013, 30: 1060-1076. 10.1093/molbev/mst017.
PubMed Central
CAS
PubMed
Google Scholar
Bach LA: IGFBP-6 five years on; not so “forgotten”?. Growth Horm IGF Res. 2005, 15: 185-192. 10.1016/j.ghir.2005.04.001.
CAS
PubMed
Google Scholar
Yamaguchi A, Sakuma K, Fujikawa T, Morita I: Expression of specific IGFBPs is associated with those of the proliferating and differentiating markers in regenerating rat plantaris muscle. J Physiol Sci. 2013, 63: 71-77. 10.1007/s12576-012-0227-6.
CAS
PubMed
Google Scholar
Duan C, Xu Q: Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. Gen Comp Endocrinol. 2005, 142: 44-52. 10.1016/j.ygcen.2004.12.022.
CAS
PubMed
Google Scholar
Iosef C, Vilk G, Gkourasas T, Lee K-J, Chen BPC, Fu P, Bach LA, Lajoie G, Gupta MB, Li SSC, Han VK: Insulin-like growth factor binding protein-6 (IGFBP-6) interacts with DNA-end binding protein Ku80 to regulate cell fate. Cell Signal. 2010, 22: 1033-1043. 10.1016/j.cellsig.2010.02.006.
CAS
PubMed
Google Scholar
Gabillard J-C, Kamangar BB, Montserrat N: Coordinated regulation of the GH/IGF system genes during refeeding in rainbow trout (Oncorhynchus mykiss). J Endocrinol. 2006, 191: 15-24. 10.1677/joe.1.06869.
CAS
PubMed
Google Scholar
Yin P, Xu Q, Duan C: Paradoxical actions of endogenous and exogenous insulin-like growth factor-binding protein-5 revealed by RNA interference analysis. J Biol Chem. 2004, 279: 32660-32666. 10.1074/jbc.M401378200.
CAS
PubMed
Google Scholar
Allen DL, Cleary AS, Hanson AM, Lindsay SF, Reed JM: CCAAT/enhancer binding protein-δ expression is increased in fast skeletal muscle by food deprivation and regulates myostatin transcription in vitro. Am J Physiol Regul Integr Comp Physiol. 2010, 299: R1592-R1601. 10.1152/ajpregu.00247.2010.
PubMed Central
CAS
PubMed
Google Scholar
Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H: A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. J Biol Chem. 2012, 287: 25255-25265. 10.1074/jbc.M112.357053.
PubMed Central
CAS
PubMed
Google Scholar
Hinits Y, Osborn DPS, Hughes SM: Differential requirements for myogenic regulatory factors distinguish medial and lateral somitic, cranial and fin muscle fibre populations. Development. 2009, 136: 403-414. 10.1242/dev.028019.
PubMed Central
CAS
PubMed
Google Scholar
Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL: Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004, 18: 39-51. 10.1096/fj.03-0610com.
CAS
PubMed
Google Scholar
Niehrs C, Acebron SP: Mitotic and mitogenic Wnt signalling. EMBO J. 2012, 31: 2705-2713. 10.1038/emboj.2012.124.
PubMed Central
CAS
PubMed
Google Scholar
Klein EA, Assoian RK: Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci. 2008, 121: 3853-3857. 10.1242/jcs.039131.
PubMed Central
CAS
PubMed
Google Scholar
Bakkar N, Guttridge D: NF-κB signaling: A Tale of Two Pathways in Skeletal Myogenesis. Physiol Rev. 2010, 90: 495-511. 10.1152/physrev.00040.2009.
CAS
PubMed
Google Scholar
Xu G, Bernaudo S, Fu G, Lee DY, Yang BB, Peng C: Cyclin G2 is degraded through the ubiquitin-proteasome pathway and mediates the antiproliferative effect of activin receptor-like kinase 7. Mol Biol Cell. 2008, 19: 4968-4979. 10.1091/mbc.E08-03-0259.
PubMed Central
CAS
PubMed
Google Scholar
Martínez-gac L, Marqués M, García Z, Campanero MR, Carrera AC: Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol. 2004, 24: 2181-2189. 10.1128/MCB.24.5.2181-2189.2004.
PubMed Central
PubMed
Google Scholar
Pan J, Nakade K, Huang Y-C, Zhu Z-W, Masuzaki S, Hasegawa H, Murata T, Yoshiki A, Yamaguchi N, Lee C-H, Yang W-C, Tsai E-M, Obata Y, Yokoyama KK: Suppression of cell-cycle progression by Jun dimerization protein-2 (JDP2) involves downregulation of cyclin-A2. Oncogene. 2010, 29: 6245-6256. 10.1038/onc.2010.355.
PubMed Central
CAS
PubMed
Google Scholar
Möröy T, Geisen C: Cyclin E. Int J Biochem Cell Biol. 2004, 36: 1424-1439. 10.1016/j.biocel.2003.12.005.
PubMed
Google Scholar
Gong D, Ferrell J: The roles of cyclin A2, B1, and B2 in early and late mitotic events. Mol Biol Cell. 2010, 21: 3149-3161. 10.1091/mbc.E10-05-0393.
PubMed Central
CAS
PubMed
Google Scholar
Vanhollebeke B, Pays E: The function of apolipoproteins L. Cell Mol Life Sci. 2006, 63: 1937-1944. 10.1007/s00018-006-6091-x.
CAS
PubMed
Google Scholar
Wang H, Eckel RH: Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab. 2009, 297: E271-E288. 10.1152/ajpendo.90920.2008.
CAS
PubMed
Google Scholar
Said FA, Werts C, Elalamy I, Couetil J, Jacquemin C, Hatmi M: TNF-α, inefficient by itself, potentiates IL-1β-induced PGHS-2 expression in human pulmonary microvascular endothelial cells: requirement of NF-kB and p38 MAPK pathways. Br J Pharmacol. 2002, 136: 1005-1014. 10.1038/sj.bjp.0704811.
PubMed Central
CAS
PubMed
Google Scholar
Vraskou Y, Roher N, Díaz M, Antonescu CN, MacKenzie SA, Planas JV: Direct involvement of tumor necrosis factor-α in the regulation of glucose uptake in rainbow trout muscle cells. Am J Physiol Regul Integr Comp Physiol. 2011, 300: R716-R723. 10.1152/ajpregu.00514.2010.
CAS
PubMed
Google Scholar
Dehoux M, Gobier C, Lause P, Bertrand L, Ketelslegers J-M, Thissen J-P: IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3β pathways and inhibition of atrogin-1 mRNA. Am J Physiol Endocrinol Metab. 2007, 292: E145-E150.
CAS
PubMed
Google Scholar
Vegusdal A, Østbye TK, Tran T, Gjøen T, Ruyter B: B-oxidation, esterification and secretion of radiolabeled fatty acids in cultivated Atlantic Salmon skeletal muscle cells. Lipids. 2004, 39: 649-658. 10.1007/s11745-004-1278-3.
CAS
PubMed
Google Scholar
Matschak TW, Stickland NC: The growth of Atlantic salmon (Salmo salar L.) myosatellite cells in culture at two different temperatures. Experientia. 1995, 51: 260-266. 10.1007/BF01931109.
CAS
PubMed
Google Scholar
Koumans JTM, Akster HA, Dulos GJ, Osse JWM: Myosatellite cells of Cyprinus carpio (Teleostei) in vitro: isolation, recognition and differentiation. Cell Tissue Res. 1990, 261: 173-181. 10.1007/BF00329450.
Google Scholar
Tacchi L, Bickerdike R, Douglas A, Secombes CJ, Martin SAM: Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2011, 31: 704-715. 10.1016/j.fsi.2011.02.023.
CAS
PubMed
Google Scholar
Zheng Q, Wang X-J: GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res. 2008, 36: W358-W363. 10.1093/nar/gkn276.
PubMed Central
CAS
PubMed
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011, 6: e21800-10.1371/journal.pone.0021800.
PubMed Central
CAS
PubMed
Google Scholar
Bookout AL, Cummins CL, Kramer MF, Pesola JM, Mangelsdorf DJ: High-Throughput Real-Time Quantitative Reverse Transcription PCR. Curr Protoc Mol Biol. 2006, Supplement: 15.8.1-15.8.28.
Google Scholar