Churchill ACL. Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol Plant Pathol. 2011;12:307–28. Available from: http://dx.doi.org/10.1111/j.1364-3703.2010.00672.x.
Article
CAS
PubMed
Google Scholar
Marín DH, Romero RA, Guzmán M, Sutton TB. Black Sigatoka: an increasing threat to banana cultivation. Plant Dis. 2003;87:208–22. Available from: http://dx.doi.org/10.1094/PDIS.2003.87.3.208.
Article
Google Scholar
Ploetz RC. Black Sigatoka of Banana. APSnet Feature Artic. [Internet]. 2001. Available from: http://www.apsnet.org/publications/apsnetfeatures/Pages/BlackSigatoka.aspx. Accessed 24 Aug 2016.
Abadie C, Chilin-Charles Y, Huat J, Salmon F, Pignolet L, Carlier J, et al. New approaches to select cultivars of banana with durable resistance to Mycosphaerella leaf spot diseases. Acta Hortic. 2009;828:171–8. Available from: http://dx.doi.org/10.17660/ActaHortic.2009.828.17.
de Lapeyre de Bellaire L, Essoh Ngando J, Abadie C, Chabrier C, Blanco R, Lescot T, et al. Is chemical control of Mycosphaerella foliar diseases of banana sustainable? Acta Hortic. 2009;818:161–70. Available from: http://dx.doi.org/10.17660/ActaHortic.2009.828.16.
Giraldo MC, Valent B. Filamentous plant pathogen effectors in action. Nat Rev Micro. 2013;11:800–14. Available from: http://dx.doi.org/10.1038/nrmicro3119.
Article
CAS
Google Scholar
Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJGM. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. Fems Microbiol Rev. 2013;37:67–93. Available from: http://dx.doi.org/10.1111/j.1574-6976.2012.00349.x.
Article
CAS
PubMed
Google Scholar
Bolton MD, van Esse HP, Vossen JH, de Jonge R, Stergiopoulos I, Stulemeijer IJE, et al. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol. 2008;69:119–36. Available from: http://dx.doi.org/10.1111/j.1365-2958.2008.06270.x.
Article
CAS
PubMed
Google Scholar
Stergiopoulos I, van den Burg HA, Okmen B, Beenen HG, van Liere S, Kema GHJ, et al. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci U S A. 2010;107:7610–5. Available from: http://dx.doi.org/10.1073/pnas.1002910107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Upadhyay RK, Strobel GA, Coval SJ, Clardy J. Fijiensin, the 1st phytotoxin from Mycosphaerella fijiensis, the causative agent of black Sigatoka disease. Experientia. 1990;46:982–4. Available from: http://dx.doi.org/10.1007/BF01939396.
Article
CAS
Google Scholar
Stierle AA, Upadhyay R, Hershenhorn J, Strobel GA, Molina G. The phytotoxins of Mycosphaerella fijiensis, the causative agent of black Sigatoka disease of bananas and plantains. Experientia. 1991;47:853–9. Available from: http://dx.doi.org/10.1007/BF01922472.
Strobel GA, Stierle AA, Upadhyay R, Hershenhorn J, Molina GC. The phytotoxins of Mycosphaerella fijiensis, the causative agent of black Sigatoka disease, and their potential use in screening for disease resistance. In: Wills B, Huggan RD, editors. Biotechnol. Appl. Banana Plantain Improv. Montpellier: International Network for the Improvement of Banana and Plantain; 1993. p. 93–103.
Google Scholar
Wheeler MH, Stipanovic RD. Melanin biosynthesis and the metabolism of flaviolin and 2-hydroxyjuglone in Wangiella dermatitidis. Arch Microbiol. 1985;142:234–41. Available from: http://dx.doi.org/10.1007/BF00693396.
Article
CAS
PubMed
Google Scholar
Cruz-Cruz CA, Garcia-Sosa K, Escalante-Erosa F, Pena-Rodriguez LM. Production of hydrophilic phytotoxins by Mycosphaerella fijiensis. J Gen Plant Pathol. 2009;75:191–5. Available from: http://dx.doi.org/10.1007/s10327-009-0165-1.
Article
CAS
Google Scholar
Cruz-Cruz CA, Garcia-Sosa K, Escalante-Erosa F, Pena-Rodriguez LM. Physiological effects of the hydrophilic phytotoxins produced by Mycosphaerella fijiensis, the causal agent of black sigatoka in banana plants. J Gen Plant Pathol. 2011;77:93–100. Available from: http://dx.doi.org/10.1007/s10327-010-0288-4.
Article
CAS
Google Scholar
D.O.E. Joint Genome Institute. Mycosphaerella fijiensis v2.0 [Internet]. 2016. Available from: http://genomeportal.jgi-psf.org/Mycfi2/Mycfi2.home.html. Accessed 24 Aug 2016.
Noar RD, Daub ME. Bioinformatics prediction of polyketide synthase gene clusters from Mycosphaerella fijiensis. PLoS ONE. 2016;11:e0158471. Available from: http://dx.doi.org/10.1371/journal.pone.0158471.
Article
PubMed
PubMed Central
Google Scholar
Choquer M, Dekkers KL, Chen HQ, Cao LH, Ueng PP, Daub ME, et al. The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin biosynthesis and fungal virulence of Cercospora nicotianae. Mol Plant Microbe Interact. 2005;18:468–76. Available from: http://dx.doi.org/10.1094/MPMI-18-0468.
Article
CAS
PubMed
Google Scholar
Kabir MS, Ganley RJ, Bradshaw RE. Dothistromin toxin is a virulence factor in dothistroma needle blight of pines. Plant Pathol. 2015;64:225–34. Available from: http://dx.doi.org/10.1111/ppa.12229.
Article
CAS
Google Scholar
Howard RJ, Ferrari MA. Role of melanin in appressorium function. Exp Mycol. 1989;13:403–18. Available from: http://dx.doi.org/10.1016/0147-5975(89)90036-4.
Article
CAS
Google Scholar
Steiner U, Oerke EC. Localized melanization of appressoria is required for pathogenicity of Venturia inaequalis. Phytopathology. 2007;97:1222–30. Available from: http://dx.doi.org/10.1094/PHYTO-97-10-1222.
Article
PubMed
Google Scholar
Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT, Proctor RH. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant Microbe Interact. 2008;21:87–97. Available from: http://dx.doi.org/10.1094/MPMI-21-1-0087.
Article
CAS
PubMed
Google Scholar
Sanchez-Rangel D, Plasencia J. The role of sphinganine analog mycotoxins on the virulence of plant pathogenic fungi. Toxin Rev. 2010;29:73–86. Available from: http://dx.doi.org/10.3109/15569543.2010.515370.
Article
CAS
Google Scholar
Covert SF. Supernumerary chromosomes in filamentous fungi. Curr Genet. 1998;33:311–9.
Article
CAS
PubMed
Google Scholar
Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. Plos Pathog. 2012;8. Available from: http://dx.doi.org/10.1371/journal.ppat.1003037.
Goodwin SB, Kema GHJ. The genomes of Mycosphaerella graminicola and M. fijiensis. In: Dean RA, Lichens-Park A, Kole C, editors. Genomics Plant-Assoc. Fungi Monocot Pathog. Berlin/Heidelberg: Springer; 2014.
O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet. 2012;44:1060–5. Available from: http://dx.doi.org/10.1038/ng.2372.
Article
PubMed
CAS
Google Scholar
Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, et al. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol. 2015;167:1158–85. Available from: http://dx.doi.org/10.1104/pp.114.255927.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portal O, Izquierdo Y, De Vleesschauwer D, Sánchez-Rodríguez A, Mendoza-Rodríguez M, Acosta-Suárez M, et al. Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis–banana interaction. Plant Cell Rep. 2011;30:913–28. Available from: http://dx.doi.org/10.1007/s00299-011-1008-z.
Article
CAS
PubMed
Google Scholar
Rodriguez HA, Rodriguez-Arango E, Morales JG, Kema G, Arango RE. Defense gene expression associated with biotrophic phase of Mycosphaerella fijiensis M. Morelet infection in banana. Plant Dis. 2016;100:1170-75. Available from: http://dx.doi.org/10.1094/PDIS-08-15-0950-RE.
Cho Y, Hou S, Zhong S. Analysis of expressed sequence tags from the fungal banana pathogen Mycosphaerella fijiensis. Open Mycol J. 2008;2:61–73. Available from: http://dx.doi.org/10.2174/1874437000802010061.
Article
CAS
Google Scholar
Passos MAN, de Cruz VO, Emediato FL, de Teixeira CC, Azevedo VCR, Brasileiro ACM, et al. Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. Bmc Genomics [Internet]. 2013;14:78. Available from: http://dx.doi.org/10.1186/1471-2164-14-78.
Uma S, Backiyarani S, Saravanakumar AS, Chandrasekar A, Thangavelu R, Saraswathi MS. Identification of Mycosphaerella eumusae responsive unique genes/transcripts from a resistant banana cultivar. Acta Hortic. 2016;1114:111–8. Available from: http://dx.doi.org/10.17660/ActaHortic.2016.1114.16.
Kulkarni RD, Kelkar HS, Dean RA. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci. 2003;28:118–21. Available from: http://dx.doi.org/10.1016/S0968-0004(03)00025-2.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Lu S, Anderson J, Chitsaz F, Derbyshire M, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–9. Available from: http://dx.doi.org/10.1093/nar/gkq1189.
Article
CAS
PubMed
Google Scholar
Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, et al. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. 2010;47:736–41. Available from: http://dx.doi.org/10.1016/j.fgb.2010.06.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohtaki S, Maeda H, Takahashi T, Yamagata Y, Hasegawa F, Gomi K, et al. Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae. Appl Environ Microbiol. 2006;72:2407–13. Available from: http://dx.doi.org/10.1128/AEM.72.4.2407-2413.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skamnioti P, Gurr SJ. Cutinase and hydrophobin interplay: A herald for pathogenesis? Plant Signal Behav. 2008;3:248–50.
Article
PubMed
PubMed Central
Google Scholar
Niderman T, Genetet I, Bruyère T, Gees R, Stintzi A, Legrand M, et al. Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol. 1995;108:17–27. Available from: http://dx.doi.org/10.1104/pp.108.1.17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55:85–97. Available from: http://dx.doi.org/10.1006/pmpp.1999.0213.
Article
Google Scholar
Prados-Rosales RC, Roldán-Rodríguez R, Serena C, López-Berges MS, Guarro J, Martínez-del-Pozo Á, et al. A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts. J Biol Chem. 2012;287:21970–9. Available from: http://dx.doi.org/10.1074/jbc.M112.364034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teixeira PJPL, Thomazella DPT, Vidal RO, do Prado PFV, Reis O, Baroni RM, et al. The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. PLoS ONE. 2012;7:e45929. Available from: http://dx.doi.org/10.1371/journal.pone.0045929.
Article
CAS
PubMed
PubMed Central
Google Scholar
Király L, Barna B, Király Z. Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance. J Phytopathol. 2007;155:385–96. Available from: http://dx.doi.org/10.1111/j.1439-0434.2007.01264.x.
Article
Google Scholar
Yamamoto S, Katagiri M, Maeno H, Hayaishi O. Salicylate hydroxylase, a monooxygenase requiring flavin adenine dinucleotide: I. Purification and general properties. J Biol Chem. 1965;240:3408–13.
CAS
PubMed
Google Scholar
Ambrose KV, Tian ZP, Wang YF, Smith J, Zylstra G, Huang BR, et al. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae. Sci. Rep. [Internet]. 2015;5:10939. Available from: http://dx.doi.org/10.1038/srep10939.
Teichert I, Wolff G, Kueck U, Nowrousian M. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. Bmc Genomics. 2012;13:511. Available from: http://dx.doi.org/10.1186/1471-2164-13-511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grognet P, Bidard F, Kuchly C, Tong LCH, Coppin E, Benkhali JA, et al. Maintaining two mating types: structure of the mating type locus and its role in heterokaryosis in Podospora anserina. Genetics. 2014;197:421–32. Available from: http://dx.doi.org/10.1534/genetics.113.159988.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6. Available from: http://dx.doi.org/10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Conesa A, Götz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:12. Available from: http://dx.doi.org/10.1155/2008/619832.
Article
CAS
Google Scholar
Zdobnov EM, Apweiler R. InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17:847–8. Available from: http://dx.doi.org/10.1093/bioinformatics/17.9.847.
Article
CAS
PubMed
Google Scholar
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20. Available from: http://dx.doi.org/10.1093/nar/gki442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. Available from: http://dx.doi.org/10.1093/nar/gkt1178.
Article
CAS
PubMed
Google Scholar
Stergiopoulos I, de Wit PJ. Fungal effector proteins. Annu Rev Phytopathol. 2009;47:233–63. Available from: http://dx.doi.org/10.1146/annurev.phyto.112408.132637.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2:953–71. Available from: http://dx.doi.org/10.1038/nprot.2007.131.
Article
CAS
PubMed
Google Scholar
Tan K, Oliver RP, Solomon PS, Moffat CS. Proteinaceous necrotrophic effectors in fungal virulence. Funct Plant Biol. 2010;37:907–12. Available from: http://dx.doi.org/10.1071/FP10067.
Article
CAS
Google Scholar
van den Burg HA, Westerink N, Francoijs K-J, Roth R, Woestenenk E, Boeren S, et al. Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. J Biol Chem. 2003;278:27340–6. Available from: http://dx.doi.org/10.1074/jbc.M212196200.
Article
PubMed
CAS
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6. Available from: http://dx.doi.org/10.1038/nmeth.1701.
Article
CAS
PubMed
Google Scholar
van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact. 2006;19:1420–30. Available from: http://dx.doi.org/10.1094/MPMI-19-1420.
Article
PubMed
CAS
Google Scholar
Krasnoff SB, Gibson DM, Belofsky GN, Gloer KB, Gloer JB. New destruxins from the entomopathogenic fungus Aschersonia sp. J Nat Prod. 1996;59:485–9. Available from: http://dx.doi.org/10.1021/np9601216.
Article
CAS
Google Scholar
Lira SP, Vita-marques AM, Seleghim MHR, Bugni TS, Labarbera DV, Sette LD, et al. New destruxins from the marine-derived fungus Beauveria felina. J Antibiot. 2006;59:553–63. Available from: http://dx.doi.org/10.1038/ja.2006.76.
Article
CAS
PubMed
Google Scholar
Wang B, Kang Q, Lu Y, Bai L, Wang C. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci. 2012;109:1287–92. Available from: http://dx.doi.org/10.1073/pnas.1115983109.
Buchwaldt L, Jensen JS. HPLC purification of destruxins produced by Alternaria brassicae in culture and leaves of Brassica napus. Phytochemistry. 1991;30:2311–6. Available from: http://dx.doi.org/10.1016/0031-9422(91)83638-2.
Article
CAS
Google Scholar
Buchwaldt L, Green H. Phytotoxicity of destruxin B and its possible role in the pathogenesis of Alternaria brassicae. Plant Pathol. 1992;41:55–63. Available from: http://dx.doi.org/10.1111/j.1365-3059.1992.tb02316.x.
Article
CAS
Google Scholar
Venkatasubbaiah P, Tisserat NA, Chilton WS. Metabolites of Ophiosphaerella herpotricha, a cause of spring dead spot of bermudagrass. Mycopathologia. 1994;128:155–9. Available from: http://dx.doi.org/10.1007/BF01138477.
Article
CAS
Google Scholar
Parada RY, Oka K, Yamagishi D, Kodama M, Otani H. Destruxin B produced by Alternaria brassicae does not induce accessibility of host plants to fungal invasion. Physiol Mol Plant Pathol. 2007;71:48–54. Available from: http://dx.doi.org/10.1016/j.pmpp.2007.10.003.
Article
CAS
Google Scholar
Jenke-Kodama H, Dittmann E. Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges. Nat Prod Rep. 2009;26:874–83. Available from: http://dx.doi.org/10.1039/b810283j.
Article
CAS
PubMed
Google Scholar
de Boer AH, de Vries-van Leeuwen IJ. Fusicoccanes: diterpenes with surprising biological functions. Trends Plant Sci. 2012;17:360–8. Available from: http://dx.doi.org/10.1016/j.tplants.2012.02.007.
Article
PubMed
CAS
Google Scholar
Minami A, Tajima N, Higuchi Y, Toyomasu T, Sassa T, Kato N, et al. Identification and functional analysis of brassicicene C biosynthetic gene cluster in Alternaria brassicicola. Bioorg Med Chem Lett. 2009;19:870–4. Available from: http://dx.doi.org/10.1016/j.bmcl.2008.11.108.
Article
CAS
PubMed
Google Scholar
Pazzagli L, Cappugi G, Manao G, Camici G, Santini A, Scala A. Purification, characterization, and amino acid sequence of cerato-platanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp. platani. J Biol Chem. 1999;274:24959–64. Available from: http://dx.doi.org/10.1074/jbc.274.35.24959.
Article
CAS
PubMed
Google Scholar
Chen H, Kovalchuk A, Kerio S, Asiegbu FO. Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya. Mycologia. 2013;105:1479–88. Available from: http://dx.doi.org/10.3852/13-115.
Article
CAS
PubMed
Google Scholar
Frischmann A, Neudl S, Gaderer R, Bonazza K, Zach S, Gruber S, et al. Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus Trichoderma atroviride. J Biol Chem. 2013;288:4278–87. Available from: http://dx.doi.org/10.1074/jbc.M112.427633.
Article
CAS
PubMed
Google Scholar
Baccelli I. Cerato-platanin family proteins: one function for multiple biological roles? Front Plant Sci. 2014;5:769. Available from: http://dx.doi.org/10.3389/fpls.2014.00769.
PubMed
Google Scholar
Gaderer R, Bonazza K, Seidl-Seiboth V. Cerato-platanins: a fungal protein family with intriguing properties and application potential. Appl Microbiol Biotechnol. 2014;98:4795–803. Available from: http://dx.doi.org/10.1007/s00253-014-5690-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Briza P, Winkler G, Kalchhauser H, Breitenbach M. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J Biol Chem. 1986;261:4288–94.
CAS
PubMed
Google Scholar
Briza P, Ellinger A, Winkler G, Breitenbach M. Characterization of a DL-dityrosine-containing macromolecule from yeast ascospore walls. J Biol Chem. 1990;265:15118–23.
CAS
PubMed
Google Scholar
Prillinger H, Schweigkofler W, Breitenbach M, Briza P, Staudacher E, Lopandic K, et al. Phytopathogenic filamentous (Ashbya, Eremothecium) and dimorphic fungi (Holleya, Nematospora) with needle-shaped ascospores as new members within the Saccharomycetaceae. Yeast. 1997;13:945–60. Available from: http://dx.doi.org/10.1002/(SICI)1097-0061(199708)13:10<945::AID-YEA150>3.0.CO;2-5.
Article
CAS
PubMed
Google Scholar
Smail EH, Briza P, Panagos A, Berenfeld L. Candida albicans cell walls contain the fluorescent cross-linking amino acid dityrosine. Infect Immun. 1995;63:4078–83.
CAS
PubMed
PubMed Central
Google Scholar
Visca P, Imperi F, Lamont IL. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 2007;15:22–30. Available from: http://dx.doi.org/10.1016/j.tim.2006.11.004.
Article
CAS
PubMed
Google Scholar
Wittenberg AHJ, van der Lee TAJ, Ben M’Barek S, Ware SB, Goodwin SB, Kilian A, et al. Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. Plos One. 2009;4. Available from: http://dx.doi.org/10.1371/journal.pone.0005863.
Goodwin SB, Ben M’Barek S, Dhillon B, Wittenberg AHJ, Crane CF, Hane JK, et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011;7:e1002070. Available from: http://dx.doi.org/10.1371/journal.pgen.1002070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuge T, Harimoto Y, Hanada K, Akagi Y, Kodama M, Akimitsu K, et al. Evolution of pathogenicity controlled by small, dispensable chromosomes in Alternaria alternata pathogens. Physiol Mol Plant Pathol. 2016;95:27–31. Available from: http://dx.doi.org/10.1016/j.pmpp.2016.02.009.
Article
CAS
Google Scholar
Walton JD, Ahn J-H, Akimitsu K, Pitkin JW, Ransom R. Leaf-spot disease of maize: chemistry, biochemistry, and molecular biology of a host-selective cyclic peptide. In: Daniels MJ, Downie JA, Osbourn AE, editors. Adv. Mol. Genet. Plant-Microbe Interact. Vol 3 Proc. 7th Int. Symp. Mol. Plant-Microbe Interact. Edinb. UK June 1994 [Internet]. Dordrecht: Springer Netherlands; 1994. p. 231–7. Available from: http://dx.doi.org/10.1007/978-94-011-0177-6_34.
Google Scholar
Kistler HC, Meinhardt LW, Benny U. Mutants of Nectria haematococca created by a site-directed chromosome breakage are greatly reduced in virulence toward pea. Mol Plant Microbe Interact. 1996;9:804–9. Available from: http://dx.doi.org/10.1094/MPMI-9-0804.
Article
CAS
Google Scholar
Wasmann CC, VanEtten HD. Transformation-mediated chromosome loss and disruption of a gene for pisatin demethylase decrease the virulence of Nectria haematococca on pea. Mol Plant Microbe Interact. 1996;9:793–803. Available from: http://dx.doi.org/10.1094/MPMI-9-0793.
Article
CAS
Google Scholar
Enkerli J, Bhatt G, Covert SF. Maackiain detoxification contributes to the virulence of Nectria haematococca MP VI on chickpea. Mol Plant Microbe Interact. 1998;11:317–26. Available from: http://dx.doi.org/10.1094/MPMI.1998.11.4.317.
Article
CAS
Google Scholar
Molina GC, Krausz JP. Toxin production of Mycosphaerella fijiensis var. difformis. Phytopathology. 1987;77:1747.
Google Scholar
Hoss R, Helbig J, Bochow H. Function of host and fungal metabolites in resistance response of banana and plantain in the Black Sigatoka disease pathosystem (Musa spp. - Mycosphaerella fijiensis). J. Phytopathol. 2000;148:387–94. Available from: http://dx.doi.org/10.1046/j.1439-0434.2000.00530.x.
Article
CAS
Google Scholar
El Hadrami A, Kone D, Lepoivre P. Effect of juglone on active oxygen species and antioxidant enzymes in susceptible and partially resistant banana cultivars to Black Leaf Streak Disease. Eur J Plant Pathol. 2005;113:241–54. Available from: http://dx.doi.org/10.1007/s10658-005-8675-y.
Article
Google Scholar
Busogoro JP, Etame JJ, Harelimana G, Lognay G, Messiaen J, Lepoivre P, et al. Experimental evidence for the action of M. fijiensis toxins on banana photosynthetic apparatus. In: Mohan JS, Swennen R, editors. Banana Improv. Cell Mol Biol Induc Mutat. Enfield: Science Publishers. 2004;161–70.
Turner NC, Graniti A. Fusicoccin - a fungal toxin that opens stomata. Nature. 1969;223:1070–1.
Article
CAS
Google Scholar
MacKinnon SL, Keifer P, Ayer WA. Components from the phytotoxic extract of Alternaria brassicicola, a black spot pathogen of canola. Phytochemistry. 1999;51:215–21. Available from: http://dx.doi.org/10.1016/S0031-9422(98)00732-8.
Article
CAS
Google Scholar
Fang X, Qiu F, Yan B, Wang H, Mort AJ, Stark RE. NMR studies of molecular structure in fruit cuticle polyesters. Phytochemistry. 2001;57:1035–42. Available from: http://dx.doi.org/10.1016/S0031-9422(01)00106-6.
Article
CAS
PubMed
Google Scholar
Snoeijers SS, Perez-Garcia A, Joosten M, De Wit P. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur J Plant Pathol. 2000;106:493–506. Available from: http://dx.doi.org/10.1023/A:1008720704105.
Article
CAS
Google Scholar
Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993;5:1575–90. Available from: http://dx.doi.org/10.1105/tpc.5.11.1575.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skamnioti P, Gurr SJ. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell. 2007;19:2674–89. Available from: http://dx.doi.org/10.1105/tpc.107.051219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peraza-Echeverría L, Rodríguez-García C, Zapata-Salazar D. A rapid, effective method for profuse in vitro conidial production of Mycosphaerella fijiensis. Austr Plant Pathol. 2008;37:460–3. Available from: http://dx.doi.org/10.1071/AP08042.
Article
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, May. 2011;17:10–12 ISSN 2226-6089. Available at: [http://journal.embnet.org/index.php/embnetjournal/article/view/200/479]. Date accessed: 24 Aug. 2016. doi:http://dx.doi.org/10.14806/ej.17.1.200.
Droc G, Larivière D, Guignon V, Yahiaoui N, This D, Garsmeur O, et al. The Banana Genome Hub. Database [Internet]. 2013;2013. Available from: http://database.oxfordjournals.org/content/2013/bat035.abstract.
D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–7. Available from: http://dx.doi.org/10.1038/nature11241.
Article
PubMed
CAS
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11. Available from: http://dx.doi.org/10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9. Available from: http://dx.doi.org/10.1093/bioinformatics/btu638.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. Available from: http://dx.doi.org/10.1186/s13059-014-0550-8.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC
T method. Methods. 2001;25:402–8. Available from: http://dx.doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. Available from: http://dx.doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. 2015. Version 3.04Available from: http://mesquiteproject.org.
Google Scholar
Keane TM, Creevey CJ, Pentony MM, Naughton TJ, Mclnerney JO. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol. 2006;6:29. Available from: http://dx.doi.org/10.1186/1471-2148-6-29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12:335–7. Available from: http://dx.doi.org/10.1007/s13127-011-0056-0.
Article
Google Scholar
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comp Appl Biosci. 1992;8:275–82.
CAS
PubMed
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12. Available from: http://dx.doi.org/10.1002/jcc.20084.
Article
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. Available from: http://dx.doi.org/10.1093/nar/22.22.4673.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams RJ, Eakin RE, Snell EE. The relationship of inositol, thiamin, biotin, pantothenic acid and vitamin B6 to the growth of yeasts. J Am Chem Soc. 1940;62:1204–7. Available from: http://dx.doi.org/10.1021/ja01862a062.
Article
CAS
Google Scholar
Yamamoto LA, Segel IH. The inorganic sulfate transport system of Penicillium chrysogenum. Arch Biochem Biophys. 1966;114:523–38. Available from: http://dx.doi.org/10.1016/0003-9861(66)90376-6.
Article
CAS
PubMed
Google Scholar
Rao TK, DeBusk AG. An inducible acetate transport system in Neurospora crassa conidia. Biochim. Biophys. Acta BBA - Biomembr. 1977;470:475–83. Available from: http://dx.doi.org/10.1016/0005-2736(77)90138-9.
Article
CAS
Google Scholar
Chaure PT, Connerton IF. Derepression of the glyoxylate cycle in mutants of Neurospora crassa accelerated for growth on acetate. Microbiology. 1995;141:1315–20. Available from: http://dx.doi.org/10.1099/13500872-141-6-1315.
Article
CAS
Google Scholar
Jennings DH. The physiology of fungal nutrition. Cambridge: Cambridge University Press; 1995.
Marzluf GA. Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol. 1997;51:73–96. Available from: http://dx.doi.org/10.1146/annurev.micro.51.1.73.
Article
CAS
PubMed
Google Scholar
Casal M, Paiva S, Andrade RP, Gancedo C, Leão C. The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol. 1999;181:2620–3.
CAS
PubMed
PubMed Central
Google Scholar
Carlsen M, Nielsen J. Influence of carbon source on α-amylase production by Aspergillus oryzae. Appl Microbiol Biotechnol. 2001;57:346–9. Available from: http://dx.doi.org/10.1007/s002530100772.
Article
CAS
PubMed
Google Scholar
Waters BM, Blevins DG, Eide DJ. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol. 2002;129:85–94. Available from: http://dx.doi.org/10.1104/pp.010829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paiva S, Devaux F, Barbosa S, Jacq C, Casal M. Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast. 2004;21:201–10. Available from: http://dx.doi.org/10.1002/yea.1056.
Article
CAS
PubMed
Google Scholar
Dumay QC, Debut AJ, Mansour NM, Saier Jr MH. The copper transporter (Ctr) family of Cu + uptake systems. J Mol Microbiol Biotechnol. 2006;11:10–9. Available from: http://dx.doi.org/10.1159/000092815.
Article
CAS
PubMed
Google Scholar
Lagaert S, Pollet A, Courtin CM, Volckaert G. β-Xylosidases and α-l-arabinofuranosidases: Accessory enzymes for arabinoxylan degradation. Biotechnol. Adv. 2014;32:316–32. Available from: http://dx.doi.org/10.1016/j.biotechadv.2013.11.005.
CAS
Google Scholar