Keller G, Ray E, Brown PO, Winge DR. Haa1, a protein homologous to the copper-regulated transcription factor Ace1, is a novel transcriptional activator. J Biol Chem. 2001;276:38697–702.
Article
CAS
PubMed
Google Scholar
Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337:95–103.
Article
CAS
PubMed
Google Scholar
Mira NP, Palma M, Guerreiro JF, Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79.
Article
PubMed
PubMed Central
Google Scholar
Mira NP, Becker JD, Sá-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS. 2010;14:587–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, et al. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res. 2011;39:6896–907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Destruelle M, Holzer H, Klionsky DJ. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol. 1994;14:2740–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takabatake A, Kawazoe N, Izawa S. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2015;99:2805–14.
Article
CAS
PubMed
Google Scholar
Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F. Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol. 2000;20:7654–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones. 1997;2:12–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sá-Correia I, Guerreiro JF, Loureiro-Dias MC, Leão C, Côrte-Real M. Zygosaccharomyces. In: Batt CA, Tortorello ML, editors. Encycl. Food Microbiol, vol 3. Elsevier Ltd, Academic Press; 2014. pp. 849–55.
Arneborg N, Jespersen L, Jakobsen M. Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Arch Microbiol. 2000;174:125–8.
Article
CAS
PubMed
Google Scholar
Dang TDT, De Maeseneire SL, Zhang BY, De Vos WH, Rajkovic A, Vermeulen A, et al. Monitoring the intracellular pH of Zygosaccharomyces bailii by green fluorescent protein. Int J Food Microbiol. 2012;156:290–5.
Article
CAS
PubMed
Google Scholar
Guerreiro JF, Mira NP, Sá-Correia I. Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics. Proteomics. 2012;12:2303–18.
Article
CAS
PubMed
Google Scholar
Rodrigues F, Sousa MJ, Ludovico P, Santos H, Côrte-Real M, Leão C. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii. PLoS One. 2012;7:e52402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sousa MJ, Miranda L, Corte-Real M, Leão C. Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Appl Env Microbiol. 1996;62:3152–7.
CAS
Google Scholar
Lindahl L, Genheden S, Eriksson LA, Olsson L, Bettiga M. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii. Biotechnol Bioeng. 2016;113:744–53.
Article
CAS
PubMed
Google Scholar
Palma M, Roque F de C, Guerreiro JF, Mira NP, Queiroz L, Sá-Correia I. Search for genes responsible for the remarkably high acetic acid tolerance of a Zygosaccharomyces bailii-derived interspecies hybrid strain. BMC Genomics. 2015;16:1070.
Article
PubMed
PubMed Central
Google Scholar
Berry DB, Gasch AP. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell. 2008;19:4580–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science. 2004;304:304–7.
Article
CAS
PubMed
Google Scholar
Byrne KP, Wolfe KH. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 2005;15:1456–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordon JL, Armisén D, Proux-Wéra E, ÓhÉigeartaigh SS, Byrne KP, Wolfe KH. Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents. Proc Natl Acad Sci U S A. 2011;108:20024–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galeote V, Bigey F, Devillers H, Neuvéglise C, Dequin S. Genome Sequence of the Food Spoilage Yeast Zygosaccharomyces bailii CLIB 213T. Genome Announc. 2013;1:e00606–13.
Article
PubMed
PubMed Central
Google Scholar
Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997;387:708–13.
Article
CAS
PubMed
Google Scholar
Jansen G, Wu C, Schade B, Thomas DY, Whiteway M. Drag&Drop cloning in yeast. Gene. 2005;344:43–51.
Article
CAS
PubMed
Google Scholar
Kuwayama H, Obara S, Morio T, Katoh M, Urushihara H, Tanaka Y. PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res. 2002;30:E2.
Article
PubMed
PubMed Central
Google Scholar
Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res. 2004;32:e19.
Article
PubMed
PubMed Central
Google Scholar
Branduardi P, Valli M, Brambilla L, Sauer M, Alberghina L, Porro D. The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res. 2004;4:493–504.
Article
CAS
PubMed
Google Scholar
Amin-ul Mannan M, Sharma S, Ganesan K. Total RNA isolation from recalcitrant yeast cells. Anal Biochem. 2009;389:77–9.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Kurtzman CP. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 2003;4:233–45.
Article
CAS
PubMed
Google Scholar
Tatusova TA, Madden TL. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett. 1999;174:247–50.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Article
CAS
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5.
Article
CAS
PubMed
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.
Article
CAS
PubMed
Google Scholar
Felsenstein J. PHYLIP - phylogeny inference package (version 3.2). Cladistics. 1989;5:164–6.
Google Scholar
Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics. 2007;8:460.
Article
PubMed
PubMed Central
Google Scholar
Grothendieck G. sqldf: Perform SQL Selects on R Data Frames. R package version 0.4-10. 2014. http://cran.r-project.org/package=sqldf.
Dias PJ, Seret M-L, Goffeau A, Correia IS, Baret PV. Evolution of the 12-spanner drug:H+ antiporter DHA1 family in hemiascomycetous yeasts. OMICS. 2010;14:701–10.
Article
CAS
PubMed
Google Scholar
Seret M-L, Diffels JF, Goffeau A, Baret PV. Combined phylogeny and neighborhood analysis of the evolution of the ABC transporters conferring multiple drug resistance in hemiascomycete yeasts. BMC Genomics. 2009;10:459.
Article
PubMed
PubMed Central
Google Scholar
Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–72.
Article
Google Scholar
Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7:434–55.
Google Scholar
Thiele DJ. ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol. 1988;8:2745–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Culotta VC, Howard WR, Liu XF. CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J Biol Chem. 1994;269:25295–302.
CAS
PubMed
Google Scholar
Tanaka K, Ishii Y, Ogawa J, Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol. 2012;78:8161–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchman C, Skroch P, Welch J, Fogel S, Karin M. The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol. 1989;9:4091–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A, Maere S, et al. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol. 2012;10:e1001446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langkjaer RB, Cliften PF, Johnston M, Piskur J. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature. 2003;421:848–52.
Article
CAS
PubMed
Google Scholar
Conant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet. 2008;9:938–50.
Article
CAS
PubMed
Google Scholar
Li H, Johnson AD. Evolution of transcription networks--lessons from yeasts. Curr Biol. 2010;20:R746–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voordeckers K, Pougach K, Verstrepen KJ. How do regulatory networks evolve and expand throughout evolution? Curr Opin Biotechnol. 2015;34:180–8.
Article
CAS
PubMed
Google Scholar
Scannell DR, Frank AC, Conant GC, Byrne KP, Woolfit M, Wolfe KH. Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc Natl Acad Sci U S A. 2007;104:8397–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151:1531–45.
CAS
PubMed
PubMed Central
Google Scholar
Hittinger CT, Carroll SB. Gene duplication and the adaptive evolution of a classic genetic switch. Nature. 2007;449:677–81.
Article
CAS
PubMed
Google Scholar
Froyd CA, Rusche LN. The duplicated deacetylases Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations. Mol Cell Biol. 2011;31:3351–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colón M, Hernández F, López K, Quezada H, González J, López G, et al. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS One. 2011;6:e16099.
Article
PubMed
PubMed Central
Google Scholar
Meijnen J-P, Randazzo P, Foulquié-Moreno MR, van den Brink J, Vandecruys P, Stojiljkovic M, et al. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnol Biofuels. 2016;9:5.
Article
PubMed
PubMed Central
Google Scholar
Evans CF, Engelke DR, Thiele DJ. ACE1 transcription factor produced in Escherichia coli binds multiple regions within yeast metallothionein upstream activation sequences. Mol Cell Biol. 1990;10:426–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koch KA, Thiele DJ. Autoactivation by a Candida glabrata copper metalloregulatory transcription factor requires critical minor groove interactions. Mol Cell Biol. 1996;16:724–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, et al. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 2006;34:D446–51.
Article
CAS
PubMed
Google Scholar