Vrana PB, Shorter KR, Szalai G, Felder MR, Crossland JP, Veres M, et al. Peromyscus (deer mice) as developmental models. Wiley interdiscip Rev Dev Biol. 2014;3(3):211–30.
Article
PubMed
Google Scholar
Steppan S, Adkins R, Anderson J. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol. 2004;53(4):533–53.
Article
PubMed
Google Scholar
Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet. 2011;43(7):648–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flint J, Eskin E. Genome-wide association studies in mice. Nat Rev Genet. 2012;13(11):807–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collaborative Cross C. The genome architecture of the Collaborative cross mouse genetic reference population. Genetics. 2012;190(2):389–401.
Article
CAS
Google Scholar
Saul MC, Philip VM, Reinholdt LG. Center for Systems Neurogenetics of a, Chesler EJ. High-diversity mouse populations for complex traits. Trends Genet. 2019;35(7):501–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Churchill GA, Gatti DM, Munger SC, Svenson KL. The diversity outbred mouse population. Mamm Genome. 2012;23(9–10):713–8.
Article
PubMed
PubMed Central
Google Scholar
Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, et al. High-resolution genetic mapping using the mouse diversity outbred population. Genetics. 2012;190(2):437–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shorter JR, Huang W, Beak JY, Hua K, Gatti DM, de Villena FP, et al. Quantitative trait mapping in diversity outbred mice identifies two genomic regions associated with heart size. Mamm Genome. 2018;29(1–2):80–9.
Article
PubMed
Google Scholar
Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J, Farinelli L, et al. Commercially available outbred mice for genome-wide association studies. PLoS Genet. 2010;6(9):e1001085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Joyner CP, Myrick LC, Crossland JP, Dawson WD. Deer mice as laboratory animals. ILAR J. 1998;39(4):322–30.
Article
PubMed
Google Scholar
Bedford NL, Hoekstra HE. Peromyscus mice as a model for studying natural variation. eLife. 2015;4.
Havighorst A, Zhang Y, Farmaki E, Kaza V, Chatzistamou I, Kiaris H. Differential regulation of the unfolded protein response in outbred deer mice and susceptibility to metabolic disease. Dis Model Mech. 2019;12(2).
Munshi-South J, Richardson JL. Peromyscus transcriptomics: understanding adaptation and gene expression plasticity within and between species of deer mice. Semin Cell Dev Biol. 2017;61:131–9.
Article
CAS
PubMed
Google Scholar
Bendesky A, Kwon YM, Lassance JM, Lewarch CL, Yao S, Peterson BK, et al. The genetic basis of parental care evolution in monogamous mice. Nature. 2017;544(7651):434–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber JN, Peterson BK, Hoekstra HE. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature. 2013;493(7432):402–5.
Article
CAS
PubMed
Google Scholar
Linnen CR, Poh YP, Peterson BK, Barrett RD, Larson JG, Jensen JD, et al. Adaptive evolution of multiple traits through multiple mutations at a single gene. Science. 2013;339(6125):1312–6.
Article
CAS
PubMed
Google Scholar
Shorter KR, Owen A, Anderson V, Hall-South AC, Hayford S, Cakora P, et al. Natural genetic variation underlying differences in Peromyscus repetitive and social/aggressive behaviors. Behav Genet. 2014;44(2):126–35.
Article
PubMed
PubMed Central
Google Scholar
Wolmarans W, Scheepers IM, Stein DJ, Harvey BH. Peromyscus maniculatus bairdii as a naturalistic mammalian model of obsessive-compulsive disorder: current status and future challenges. Metab Brain Dis. 2018;33(2):443–55.
Article
PubMed
Google Scholar
Jiujias M, Kelley E, Hall L. Restricted, repetitive behaviors in autism Spectrum disorder and obsessive-compulsive disorder: a comparative review. Child Psychiatry Hum Dev. 2017;48(6):944–59.
Article
PubMed
Google Scholar
Long AD, Baldwin-Brown J, Tao Y, Cook VJ, Balderrama-Gutierrez G, Corbett-Detig R, et al. The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections. Sci Adv. 2019;5(7):eaaw6441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7(5):e37135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3(10):e3376.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wiedmeyer CE, Crossland JP, Veres M, Dewey MJ, Felder MR, Barlow SC, et al. Hematologic and serum biochemical values of 4 species of Peromyscus mice and their hybrids. J Am Assoc Lab Anim Sci. 2014;53(4):336–43.
CAS
PubMed
PubMed Central
Google Scholar
Baumgardner DJ, Ward SE, Dewsbury DA. Diurnal patterning of 8 activities in 14 species of Muroid rodents. Anim Learn Behav. 1980;8(2):322–30.
Article
Google Scholar
Powell SB, Newman HA, Pendergast JF, Lewis MH. A rodent model of spontaneous stereotypy: initial characterization of developmental, environmental, and neurobiological factors. Physiol Behav. 1999;66(2):355–63.
Article
CAS
PubMed
Google Scholar
Katherine M. Stereotypic Movement Disorders. Semin Pediatr Neurol. 2018;25:19–24.
Article
PubMed
Google Scholar
Lewis MH. Environmental complexity and central nervous system development and function. Ment Retard Dev Disabil Res Rev. 2004;10(2):91–5.
Article
PubMed
Google Scholar
Presti MF, Mikes HM, Lewis MH. Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation. Pharmacol Biochem Behav. 2003;74(4):833–9.
Article
CAS
PubMed
Google Scholar
Battle DE. Diagnostic and statistical manual of mental disorders (DSM). Codas. 2013;25(2):191–2.
Article
PubMed
Google Scholar
Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol. 2007;27(24):8466–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang T, Guo H, Xiong B, Stessman HA, Wu H, Coe BP, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun. 2016;7:13316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism Spectrum disorder. JAMA. 2015;314(9):895–903.
Article
CAS
PubMed
Google Scholar
De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32(Web Server issue):W273–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18(2):333–4.
Article
CAS
PubMed
Google Scholar
Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003;31(13):3651–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davey JW, Blaxter ML. RADSeq: next-generation population genetics. Brief Funct Genomics. 2010;9(5–6):416–23.
Article
CAS
PubMed
Google Scholar
Feldman HW. Piebald characters of the deer mouse. J Heredity. 1936;27(8):301.
Article
Google Scholar
Dawson WD. Fertility and size inheritance in a Peromyscus species cross. Evol Int J Organic Evol. 1965;19(1):44–55.
Article
Google Scholar
Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res. 2008;18(12):1163–76.
Article
CAS
PubMed
Google Scholar
Dewey MJ, Dawson WD. Deer mice: “the Drosophila of north American mammalogy”. Genesis. 2001;29(3):105–9.
Article
CAS
PubMed
Google Scholar
Milone R, Masson R, Di Cosmo C, Tonacchera M, Bertini V, Guzzetta A, et al. A Not So Benign Family Pedigree With Hereditary Chorea: A Broader Phenotypic Expression or Additional Picture? Child Neurol Open. 2019;6:2329048x19828881.
Article
PubMed
PubMed Central
Google Scholar
Sussel L, Marin O, Kimura S, Rubenstein JLR. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development. 1999;126(15):3359–70.
Article
CAS
PubMed
Google Scholar
Hashemi E, Ariza J, Rogers H, Noctor SC, Martínez-Cerdeño V. The number of Parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb Cortex. 2017;27(3):1931–43.
PubMed
Google Scholar
Sajdel-Sulkowska EM, Makowska-Zubrycka M, Czarzasta K, Kasarello K, Aggarwal V, Bialy M, et al. Common genetic variants link the abnormalities in the gut-brain Axis in prematurity and autism. Cerebellum. 2019;18(2):255–65.
Article
CAS
PubMed
Google Scholar
Corbin JG, Rutlin M, Gaiano N, Fishell G. Combinatorial function of the homeodomain proteins Nkx2.1 and Gsh2 in ventral telencephalic patterning. Development. 2003;130(20):4895–906.
Article
CAS
PubMed
Google Scholar
Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988;85(15):5733–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garel S, Marin F, Grosschedl R, Charnay P. Ebf1 controls early cell differentiation in the embryonic striatum. Development. 1999;126(23):5285–94.
Article
CAS
PubMed
Google Scholar
Tinterri A, Menardy F, Diana MA, Lokmane L, Keita M, Coulpier F, et al. Active intermixing of indirect and direct neurons builds the striatal mosaic. Nat Commun. 2018;9(1):4725.
Article
PubMed
PubMed Central
CAS
Google Scholar
Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, et al. Mutation of the Sry-related Sox10 gene in dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A. 1998;95(9):5161–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet. 1998;18(2):171–3.
Article
CAS
PubMed
Google Scholar
Bondurand N, Dastot-Le Moal F, Stanchina L, Collot N, Baral V, Marlin S, et al. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet. 2007;81(6):1169–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31(4):391–406.
Article
CAS
PubMed
Google Scholar
Baldwin CT, Hoth CF, Macina RA, Milunsky A. Mutations in PAX3 that cause Waardenburg syndrome type I: ten new mutations and review of the literature. Am J Med Genet. 1995;58(2):115–22.
Article
CAS
PubMed
Google Scholar
Jelena B, Christina L, Eric V, Fabiola QR. Phenotypic variability in Waardenburg syndrome resulting from a 22q12.3-q13.1 microdeletion involving SOX10. Am J Med Genet A. 2014;164A(6):1512–9.
Article
PubMed
CAS
Google Scholar
Edery P, Pelet A, Mulligan LM, Abel L, Attie T, Dow E, et al. Long segment and short segment familial Hirschsprung's disease: variable clinical expression at the RET locus. J Med Genet. 1994;31(8):602–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang LR, Crossland JP, Dawson WD. Coat color genetics of Peromyscus: II. Tan streak--a new recessive mutation in the deer mouse, P. maniculatus. J Heredity. 1993;84(4):304–6.
Article
CAS
Google Scholar
Cowling K, Robbins RJ, Haigh GR, Teed SK, Dawson WD. Coat color genetics of Peromyscus: IV. Variable white, a new dominant mutation in the deer mouse. J Heredity. 1994;85(1):48–52.
CAS
Google Scholar
Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010;11:485.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23(2):257–8.
Article
CAS
PubMed
Google Scholar
Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, et al. VISTA : visualizing global DNA sequence alignments of arbitrary length. Bioinformatics. 2000;16(11):1046–7.
Article
CAS
PubMed
Google Scholar
Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8(1):352–9.
Silver LM. Mouse genetics : concepts and applications. New York: Oxford University Press; 1995. xiii, 362 p. p.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.
Article
CAS
PubMed
Google Scholar