Dieringer D, Schlötterer C. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res. 2003;13(10):2242–51. https://doi.org/10.1101/gr.1416703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zavodna M, Bagshaw A, Brauning R, Gemmell NJ. The effects of transcription and recombination on mutational dynamics of short tandem repeats. Nucleic Acids Res. 2018;46(3):1321–30. https://doi.org/10.1093/nar/gkx1253.
Article
CAS
PubMed
Google Scholar
Fungtammasan A, Ananda G, Hile SE, Su MS, Sun C, Harris R, et al. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications. Genome Res. 2015;25(5):736–49. https://doi.org/10.1101/gr.185892.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed MM, Shen C, Khan AQ, Wahid MA, Shaban M, Lin Z. A comparative genomics approach revealed evolutionary dynamics of microsatellite imperfection and conservation in genus Gossypium. Hereditas. 2017;154(1):1–12.
Article
Google Scholar
Hatcher E, Wang C, Lefkowitz E. Genome variability and gene content in chordopoxviruses: dependence on microsatellites. Viruses. 2015;7(4):2126–46. https://doi.org/10.3390/v7042126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian S, Mishra RK, Singh L. Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol. 2003;4(2):1–10.
Article
Google Scholar
Pearson CE, Edamura KN, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet. 2005;6(10):729–42. https://doi.org/10.1038/nrg1689.
Article
CAS
PubMed
Google Scholar
Gelsomino F, Barbolini M, Spallanzani A, Pugliese G, Cascinu S. The evolving role of microsatellite instability in colorectal cancer: a review. Cancer Treat Rev. 2016;51:19–26. https://doi.org/10.1016/j.ctrv.2016.10.005.
Article
CAS
PubMed
Google Scholar
Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet. 2018;19(5):286–98. https://doi.org/10.1038/nrg.2017.115.
Article
CAS
PubMed
Google Scholar
Chistiakov DA, Hellemans B, Volckaert FAM. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture. 2006;255(1):1–29. https://doi.org/10.1016/j.aquaculture.2005.11.031.
Article
CAS
Google Scholar
Brouwer JR, Willemsen R, Oostra BA. Microsatellite repeat instability and neurological disease. BioEssays. 2009;31(1):71–83. https://doi.org/10.1002/bies.080122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao FB, Richter JD. Microsatellite expansion diseases: repeat toxicity found in translation. Neuron. 2017;93(2):249–51. https://doi.org/10.1016/j.neuron.2017.01.001.
Article
CAS
PubMed
Google Scholar
Sinden RR. Origins of instability. Nature. 2001;411(6839):757–8. https://doi.org/10.1038/35081234.
Article
CAS
PubMed
Google Scholar
Dib C, Fauré S, Fizames C, Samson D, Drouot N, Vignal A, et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996;380(6570):152–4. https://doi.org/10.1038/380152a0.
Article
CAS
PubMed
Google Scholar
Dietrich WF, Miller JC, Steen RG, Merchant M, Damron D, Nahf R, et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nat Genet. 1994;7(2):220–45. https://doi.org/10.1038/ng0694supp-220.
Article
CAS
PubMed
Google Scholar
Kaye C, Milazzo J, Rozenfeld S, Lebrun MH, Tharreau D. The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genet Biol. 2003;40(3):207–14. https://doi.org/10.1016/j.fgb.2003.08.001.
Article
CAS
PubMed
Google Scholar
Ren P, Peng W, You W, Huang Z, Guo Q, Chen N, et al. Genetic mapping and quantitative trait loci analysis of growth-related traits in the small abalone Haliotis diversicolor using restriction-site-associated DNA sequencing. Aquaculture. 2016;454:163–70. https://doi.org/10.1016/j.aquaculture.2015.12.026.
Article
CAS
Google Scholar
Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martínez-Gómez P. Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Rep. 2011;29(2):404–10. https://doi.org/10.1007/s11105-010-0242-9.
Article
CAS
Google Scholar
Chambers GK, Curtis C, Millar CD, Huynen L, Lambert DM. DNA fingerprinting in zoology: past, present, future. Invest Genet. 2014;5(1):1–11.
Article
Google Scholar
Rafiei V, Banihashemi Z, Jiménez-Díaz RM, Navas-Cortés JA, Landa BB, Jiménez-Gasco MM, et al. Comparison of genotyping by sequencing and microsatellite markers for unravelling population structure in the clonal fungus Verticillium dahliae. Plant Pathol. 2018;67(1):76–86. https://doi.org/10.1111/ppa.12713.
Article
CAS
Google Scholar
Bhargava A, Fuentes FF. Mutational dynamics of microsatellites. Mol Biotechnol. 2010;44(3):250–66. https://doi.org/10.1007/s12033-009-9230-4.
Article
CAS
PubMed
Google Scholar
Vieira MLC, Santini L, Diniz AL, Munhoz CDF. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 2016;39(3):312–28. https://doi.org/10.1590/1678-4685-GMB-2016-0027.
Article
PubMed
PubMed Central
Google Scholar
Garner TWJ. Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome. 2002;45(1):212–5. https://doi.org/10.1139/g01-113.
Article
CAS
PubMed
Google Scholar
Hancock J. Microsatellites and other simple sequences: genomic context and mutational mechanisms. New York: Oxford University Press; 1999.
Google Scholar
Primmer CR, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H. Low frequency of microsatellites in the avian genome. Genome Res. 1997;7(5):471–82. https://doi.org/10.1101/gr.7.5.471.
Article
CAS
PubMed
Google Scholar
Katti MV, Ranjekar PK, Gupta VS. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol. 2001;18(7):1161–7. https://doi.org/10.1093/oxfordjournals.molbev.a003903.
Article
CAS
PubMed
Google Scholar
Karlin S, Brocchieri L, Bergman A, Mrázek J, Gentles AJ. Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A. 2002;99(1):333–8. https://doi.org/10.1073/pnas.012608599.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rockman MV, Wray GA. Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol. 2002;19(11):1991–2004. https://doi.org/10.1093/oxfordjournals.molbev.a004023.
Article
CAS
PubMed
Google Scholar
Li YC, Korol AB, Fahima T, Nevo E. Microsatellites within genes: structure, function, and evolution. Mol Biol Evol. 2004;21(6):991–1007. https://doi.org/10.1093/molbev/msh073.
Article
CAS
PubMed
Google Scholar
Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016;22(11):1342–50. https://doi.org/10.1038/nm.4191.
Article
CAS
PubMed
Google Scholar
Ranathunge C, Wheeler GL, Chimahusky ME, Kennedy MM, Morrison JI, Baldwin BS, et al. Transcriptome profiles of sunflower reveal the potential role of microsatellites in gene expression divergence. Mol Ecol. 2018;27(5):1188–99. https://doi.org/10.1111/mec.14522.
Article
CAS
PubMed
Google Scholar
Orgel LE, Crick FHC. Selfish DNA: the ultimate parasite. Nature. 1980;284(5757):604–7. https://doi.org/10.1038/284604a0.
Article
CAS
PubMed
Google Scholar
Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5(6):435–45. https://doi.org/10.1038/nrg1348.
Article
CAS
PubMed
Google Scholar
Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram RM. Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics. 2007;23(1):1–4. https://doi.org/10.1093/bioinformatics/btl547.
Article
CAS
PubMed
Google Scholar
Kim CK, Lee GS, Mo JS, Bae SH, Lee TH. Molecular marker database for efficient use in agricultural breeding programs. Bioinformation. 2015;11(9):444–6. https://doi.org/10.6026/97320630011444.
Article
PubMed
PubMed Central
Google Scholar
Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 2000;10(7):967–81. https://doi.org/10.1101/gr.10.7.967.
Article
PubMed
PubMed Central
Google Scholar
Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 2000;10(1):72–80.
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Weber JL, Zhong G, Tanksley SD. Survey of plant short tandem DNA repeats. Theor Appl Genet. 1994;88(1):1–6. https://doi.org/10.1007/BF00222386.
Article
CAS
PubMed
Google Scholar
Varshney RK, Thiel T, Stein N, Langridge P, Graner A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett. 2002;7(2A):537–46.
CAS
PubMed
Google Scholar
Moran C. Microsatellite repeats in pig (Sus domestica) and chicken (Gallus domesticus) genomes. J Hered. 1993;84(4):274–80. https://doi.org/10.1093/oxfordjournals.jhered.a111339.
Article
CAS
PubMed
Google Scholar
Jurka J, Pethiyagoda C. Simple repetitive DNA sequences from primates: compilation and analysis. J Mol Evol. 1995;40(2):120–6. https://doi.org/10.1007/BF00167107.
Article
CAS
PubMed
Google Scholar
Lith HA, Zutphen LFM. Characterization of rabbit DNA micros extracted from the EMBL nucleotide sequence database. Anim Genet. 1996;27(6):387–95. https://doi.org/10.1111/j.1365-2052.1996.tb00505.x.
Article
PubMed
Google Scholar
Hammock EAD, Young LJ. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science. 2005;308(5728):1630–4. https://doi.org/10.1126/science.1111427.
Article
CAS
PubMed
Google Scholar
Gylfe AE, Tuupanen S, Hänninen U, Kondelin J, Ristolainen H, Katainen R, et al. Abstract 5193: novel candidate oncogenes with mutation hot spots in microsatellite unstable colorectal cancer. Cancer Res. 2014;74(19):5193.
Google Scholar
Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet. 2010;44(1):445–77. https://doi.org/10.1146/annurev-genet-072610-155046.
Article
CAS
PubMed
Google Scholar
Faux NG, Bottomley SP, Lesk AM, Irving JA, Morrison JR, de la Banda MG, et al. Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res. 2005;15(4):537–51. https://doi.org/10.1101/gr.3096505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mularoni L, Ledda A, Toll-Riera M, Albà MM. Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res. 2010;20(6):745–54. https://doi.org/10.1101/gr.101261.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gemayel R, Cho J, Boeynaems S, Verstrepen KJ. Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes. 2012;3(3):461–80. https://doi.org/10.3390/genes3030461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ. Unstable tandem repeats in promoters confer transcriptional evolvability. Science. 2009;324(5931):1213–6. https://doi.org/10.1126/science.1170097.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989;59(3):521–9. https://doi.org/10.1016/0092-8674(89)90035-4.
Article
CAS
PubMed
Google Scholar
Casas-Vila N, Scheibe M, Freiwald A, Kappei D, Butter F. Identification of TTAGGG-binding proteins in Neurospora crassa, a fungus with vertebrate-like telomere repeats. BMC Genomics. 2015;16(1):1–9.
Article
Google Scholar
Sand L, Szuhai K, Hogendoorn P. Sequencing overview of Ewing sarcoma: a journey across genomic, epigenomic and transcriptomic landscapes. Int J Mol Sci. 2015;16(7):16176–215. https://doi.org/10.3390/ijms160716176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai Y, Sun F. The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol. 2003;20(12):2123–31. https://doi.org/10.1093/molbev/msg228.
Article
CAS
PubMed
Google Scholar
Bachtrog D, Agis M, Imhof M, Schlötterer C. Microsatellite variability differs between dinucleotide repeat motifs—evidence from Drosophila melanogaster. Mol Biol Evol. 2000;17(9):1277–85. https://doi.org/10.1093/oxfordjournals.molbev.a026411.
Article
CAS
PubMed
Google Scholar
Chakraborty R, Kimmel M, Stivers DN, Davison LJ, Deka R. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci U S A. 1997;94(3):1041–6. https://doi.org/10.1073/pnas.94.3.1041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schug MD, Hutter CM, Wetterstrand KA, Gaudette MS, Mackay TF, Aquadro CF. The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol. 1998;15(12):1751–60. https://doi.org/10.1093/oxfordjournals.molbev.a025901.
Article
CAS
PubMed
Google Scholar
Amos W, Flint J, Xu X. Heterozygosity increases microsatellite mutation rate, linking it to demographic history. BMC Genet. 2008;9(1):1–10.
Article
Google Scholar
Amos W. Heterozygosity increases microsatellite mutation rate. Biol Lett. 2016;12(1):20150902.
Article
Google Scholar
Primmer CR, Ellegren H, Saino N, Møller AP. Directional evolution in germline microsatellite mutations. Nat Genet. 1996;13(4):391–3. https://doi.org/10.1038/ng0896-391.
Article
CAS
PubMed
Google Scholar
Ellegren H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet. 2000;24(4):400–2. https://doi.org/10.1038/74249.
Article
CAS
PubMed
Google Scholar
Whittaker JC, Harbord RM, Boxall N, Mackay I, Dawson G, Sibly RM. Likelihood-based estimation of microsatellite mutation rates. Genetics. 2003;164(2):781–7.
Article
PubMed
PubMed Central
Google Scholar
Seyfert AL, Cristescu MEA, Frisse L, Schaack S, Thomas WK, Lynch M. The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics. 2008;178(4):2113–21. https://doi.org/10.1534/genetics.107.081927.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlötterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma. 2000;109(6):365–71. https://doi.org/10.1007/s004120000089.
Article
PubMed
Google Scholar
Noble L. Microsatellites — evolution and applications. Heredity. 1999;83(5):633–4. https://doi.org/10.1038/sj.hdy.6886482.
Article
Google Scholar
Madesis P, Ganopoulos I, Tsaftaris A. Microsatellites: evolution and contribution. In: Kantartzi SK, Totowa NJ, editors. Microsatellites: Methods and Protocols. New York: Humana Press; 2013. p. 1–13.
Saeed AF, Wang R, Wang S. Microsatellites in pursuit of microbial genome evolution. Front Microbiol. 2016;6:1462.
Article
PubMed
PubMed Central
Google Scholar
Weber JL, Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993;2(8):1123–8. https://doi.org/10.1093/hmg/2.8.1123.
Article
CAS
PubMed
Google Scholar
Pearson CE, Sinden RR. Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol. 1998;8(3):321–30. https://doi.org/10.1016/S0959-440X(98)80065-1.
Article
CAS
PubMed
Google Scholar
Sinden RR. Biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet. 1999;64(2):346–53. https://doi.org/10.1086/302271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richard GF, Pâques F. Mini- and microsatellite expansions: the recombination connection. EMBO Rep. 2000;1(2):122–6. https://doi.org/10.1093/embo-reports/kvd031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371(6494):215–20. https://doi.org/10.1038/371215a0.
Article
CAS
PubMed
Google Scholar
Liu S, Hou W, Sun T, Xu Y, Li P, Yue B, et al. Genome-wide mining and comparative analysis of microsatellites in three macaque species. Mol Gen Genomics. 2017;292(3):537–50. https://doi.org/10.1007/s00438-017-1289-1.
Article
CAS
Google Scholar
Xu Y, Li W, Hu Z, Zeng T, Shen Y, Liu S, et al. Genome-wide mining of perfect microsatellites and tetranucleotide orthologous microsatellites estimates in six primate species. Gene. 2018;643:124–32. https://doi.org/10.1016/j.gene.2017.12.008.
Article
CAS
PubMed
Google Scholar
Xu Y, Hu Z, Wang C, Zhang X, Li J, Yue B. Characterization of perfect microsatellite based on genome-wide and chromosome level in rhesus monkey (Macaca mulatta). Gene. 2016;592(2):269–75. https://doi.org/10.1016/j.gene.2016.07.016.
Article
CAS
PubMed
Google Scholar
Karaoglu H, Lee CMY, Meyer W. Survey of simple sequence repeats in completed fungal genomes. Mol Biol Evol. 2005;22(3):639–49. https://doi.org/10.1093/molbev/msi057.
Article
CAS
PubMed
Google Scholar
Li C-Y, Liu L, Yang J, Li J-B, Su Y, Zhang Y, et al. Genome-wide analysis of microsatellite sequence in seven filamentous fungi. Interdiscip Sci: Comput Life Sci. 2009;1(2):141–50. https://doi.org/10.1007/s12539-009-0014-5.
Article
CAS
Google Scholar
Lim S, Notley-McRobb L, Lim M, Carter DA. A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genet Biol. 2004;41(11):1025–36. https://doi.org/10.1016/j.fgb.2004.08.004.
Article
CAS
PubMed
Google Scholar
Murat C, Riccioni C, Belfiori B, Cichocki N, Labbé J, Morin E, et al. Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers. Fungal Genet Biol. 2011;48(6):592–601. https://doi.org/10.1016/j.fgb.2010.10.007.
Article
CAS
PubMed
Google Scholar
Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, et al. vanKuyk PA, Horton JS, Grigoriev IV, Wösten HAB. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28(9):957–63. https://doi.org/10.1038/nbt.1643.
Article
CAS
PubMed
Google Scholar
Qian J, Xu H, Song J, Xu J, Zhu Y, Chen S. Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum. Gene. 2013;512(2):331–6. https://doi.org/10.1016/j.gene.2012.09.127.
Article
CAS
PubMed
Google Scholar
Zhao X, Tan Z, Feng H, Yang R, Li M, Jiang J, et al. Microsatellites in different potyvirus genomes: survey and analysis. Gene. 2011;488(1):52–6. https://doi.org/10.1016/j.gene.2011.08.016.
Article
CAS
PubMed
Google Scholar
Mrázek J, Guo X, Shah A. Simple sequence repeats in prokaryotic genomes. Proc Natl Acad Sci U S A. 2007;104(20):8472–7. https://doi.org/10.1073/pnas.0702412104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burranboina K, Abraham S, Murugan K, Bayyappa M, Yogisharadhya R, Raghavendra G. Genome wide identification and analysis of microsatellite repeats in the largest DNA viruses (Poxviridae family): an insilico approach. Annu Res Rev Biol. 2018;22(1):1–11. https://doi.org/10.9734/ARRB/2018/38367.
Article
Google Scholar
Zhou L, Deng L, Fu Y, Wu X, Zhao X, Chen Y, et al. Comparative analysis of microsatellites and compound microsatellites in T4-like viruses. Gene. 2016;575(2):695–701. https://doi.org/10.1016/j.gene.2015.09.053.
Article
CAS
PubMed
Google Scholar
Du L, Zhang C, Liu Q, Zhang X, Yue B. Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics. 2018;34(4):681–3. https://doi.org/10.1093/bioinformatics/btx665.
Article
CAS
PubMed
Google Scholar
Kofler R, Schlötterer C, Lelley T. SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics. 2007;23(13):1683–5. https://doi.org/10.1093/bioinformatics/btm157.
Article
CAS
PubMed
Google Scholar
Luo W, Nie Z, Zhan F, Wei J, Wang W, Gao Z. Rapid development of microsatellite markers for the endangered fsh Schizothorax biddulphi (Günther) using next generation sequencing and cross-species amplification. Int J Mol Sci. 2012;13(11):14946–55. https://doi.org/10.3390/ijms131114946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Li W, Jian Z, Yue B, Yan Y. Genome-wide distribution and organization of microsatellites in six species of birds. Biochem Syst Ecol. 2016;67:95–102. https://doi.org/10.1016/j.bse.2016.05.023.
Article
CAS
Google Scholar
Cai G, Leadbetter CW, Muehlbauer MF, Molnar TJ, Hillman BI. Genome-wide microsatellite identification in the fungus Anisogramma anomala using Illumina sequencing and genome assembly. PLoS One. 2013;8(11):e82408. https://doi.org/10.1371/journal.pone.0082408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Chen M, Wang H, Wang JF, Bao D. Microsatellites in the genome of the edible mushroom, Volvariella volvacea. Biomed Res Int. 2014;2014:1–10.
Google Scholar
Webster MT, Smith NGC, Ellegren H. Microsatellite evolution inferred from human– chimpanzee genomic sequence alignments. Proc Natl Acad Sci U S A. 2002;99(13):8748–53. https://doi.org/10.1073/pnas.122067599.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pascual M, Schug MD, Aquadro CF. High density of long dinucleotide microsatellites in Drosophila subobscura. Mol Biol Evol. 2000;17(8):1259–67. https://doi.org/10.1093/oxfordjournals.molbev.a026409.
Article
CAS
PubMed
Google Scholar
Schlötterer C, Harr B. Drosophila virilis has long and highly polymorphic microsatellites. Mol Biol Evol. 2000;17(11):1641–6. https://doi.org/10.1093/oxfordjournals.molbev.a026263.
Article
PubMed
Google Scholar
Hancock JM. Simple sequences in a ‘minimal ’ genome. Nat Genet. 1996;14(1):14–5. https://doi.org/10.1038/ng0996-14.
Article
CAS
PubMed
Google Scholar
Qi WH, Jiang XM, Du LM, Xiao GS, Hu TZ, Yue BS, et al. Genome-wide survey and analysis of microsatellite sequences in bovid species. PLoS One. 2015;10(7):e0133667. https://doi.org/10.1371/journal.pone.0133667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perinchery G, Nojima D, Goharderakhshan R, Tanaka Y, Alonzo J, Dahiya R. Microsatellite instability of dinucleotide tandem repeat sequences is higher than trinucleotide, tetranucleotide and pentanucleotide repeat sequences in prostate cancer. Int J Oncol. 2000;16(6):1203–9.
CAS
PubMed
Google Scholar
Borodulina OR, Golubchikova JS, Ustyantsev IG, Kramerov DA. Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: complex requirements for nucleotide sequences. Biochim Biophys Acta. 2016;1859(2):355–65. https://doi.org/10.1016/j.bbagrm.2015.12.003.
Article
CAS
PubMed
Google Scholar
Kaessmann H, Vinckenbosch N, Long M. RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet. 2009;10(1):19–31. https://doi.org/10.1038/nrg2487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richardson SR, Morell S, Faulkner GJ. L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet. 2014;48(1):1–27. https://doi.org/10.1146/annurev-genet-120213-092412.
Article
CAS
PubMed
Google Scholar
Prasad MD. Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species. Genetics. 2005;169(1):197–214. https://doi.org/10.1534/genetics.104.031005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gur-Arie R, Cohen CJ, Eitan Y, Shelef L, Hallerman EM, Kashi Y. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res. 2000;10(1):62–71.
CAS
PubMed
PubMed Central
Google Scholar
Murray V. The frequency of poly(G) tracts in the human genome and their use as a sensor of DNA damage. Comput Biol Chem. 2015;54:13–7. https://doi.org/10.1016/j.compbiolchem.2014.11.006.
Article
CAS
PubMed
Google Scholar
Schlötterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992;20(2):211–5. https://doi.org/10.1093/nar/20.2.211.
Article
PubMed
PubMed Central
Google Scholar
Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet. 2002;30(2):194–200. https://doi.org/10.1038/ng822.
Article
CAS
PubMed
Google Scholar
Russell GJ, Walker PMB, Elton RA, Subak-Sharpe JH. Doublet frequency analysis of fractionated vertebrate nuclear DNA. J Mol Biol. 1976;108(1):1–20. https://doi.org/10.1016/S0022-2836(76)80090-3.
Article
CAS
PubMed
Google Scholar
Swartz MN, Trautner TA, Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem. 1962;237(6):1961–7. https://doi.org/10.1016/S0021-9258(19)73967-2.
Article
CAS
PubMed
Google Scholar
Coulondre C, Miller JH, Farabaugh PJ, Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978;274(5673):775–80. https://doi.org/10.1038/274775a0.
Article
CAS
PubMed
Google Scholar
Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8(7):1499–504. https://doi.org/10.1093/nar/8.7.1499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooper DN, Taggart MH, Bird AP. Unmethlated domains in vertebrate DNA. Nucleic Acids Res. 1983;11(3):647–58. https://doi.org/10.1093/nar/11.3.647.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985;40(1):91–9. https://doi.org/10.1016/0092-8674(85)90312-5.
Article
CAS
PubMed
Google Scholar
Razin A. CpG methylation, chromatin structure and gene silencing—a three-way connection. EMBO J. 1998;17(17):4905–80. https://doi.org/10.1093/emboj/17.17.4905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckert KA, Yan G, Hile SE. Mutation rate and specificity analysis of tetranucleotide microsatellite DNA alleles in somatic human cells. Mol Carcinog. 2002;34(3):140–50. https://doi.org/10.1002/mc.10058.
Article
CAS
PubMed
Google Scholar
Wierdl M, Dominska M, Petes TD. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997;146(3):769–79. https://doi.org/10.1093/genetics/146.3.769.
Article
CAS
PubMed
PubMed Central
Google Scholar