Johnson FB, Sinclair DA, Guarente L: Molecular biology of aging. Cell. 1999, 96 (2): 291-302. 10.1016/S0092-8674(00)80567-X.
CAS
Google Scholar
Higuchi K: Genetic characterization of senescence-accelerated mouse (SAM). Exp Gerontol. 1997, 32 (1–2): 129-138.
CAS
Google Scholar
Takeda T, Hosokawa M, Higuchi K: Senescence-accelerated mouse (SAM): a novel murine model of senescence. Exp Gerontol. 1997, 32 (1–2): 105-109.
CAS
Google Scholar
Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M: Pathobiology of the senescence-accelerated mouse (SAM). Exp Gerontol. 1997, 32 (1–2): 117-127.
CAS
Google Scholar
Kitado H, Higuchi K, Takeda T: Molecular genetic characterization of the senescence-accelerated mouse (SAM) strains. J Gerontol. 1994, 49 (6): B247-B254. 10.1093/geronj/49.6.B247.
CAS
Google Scholar
Takeda T, Hosokawa M, Higuchi K: Senescence-accelerated mouse (SAM). A novel murine model of aging. The SAM model of senescence. Edited by: Takeda T. 1994, Amsterdam: Elsevier B. V, 15-
Google Scholar
Carter TA, Greenhall JA, Yoshida S, Fuchs S, Helton R, Swaroop A, Lockhart DJ, Barlow C: Mechanisms of aging in senescence-accelerated mice. Genome Biol. 2005, 6 (6): R48-10.1186/gb-2005-6-6-r48.
PubMed Central
Google Scholar
Higuchi K, Kitagawa K, Naiki H, Hanada K, Hosokawa M, Takeda T: Polymorphism of apolipoprotein A-II (apoA-II) among inbred strains of mice. Relationship between the molecular type of apoA-II and mouse senile amyloidosis. Biochem J. 1991, 279 (Pt 2): 427-433.
PubMed Central
CAS
Google Scholar
Nakanishi R, Shimizu M, Mori M, Akiyama H, Okudaira S, Otsuki B, Hashimoto M, Higuchi K, Hosokawa M, Tsuboyama T, Nakamura T: Secreted frizzled-related protein 4 is a negative regulator of peak BMD in SAMP6 mice. J Bone Miner Res. 2006, 21 (11): 1713-1721. 10.1359/jbmr.060719.
CAS
Google Scholar
Xia C, Higuchi K, Shimizu M, Matsushita T, Kogishi K, Wang J, Chiba T, Festing MF, Hosokawa M: Genetic typing of the senescence-accelerated mouse (SAM) strains with microsatellite markers. Mamm Genome. 1999, 10 (3): 235-238. 10.1007/s003359900979.
CAS
Google Scholar
Naiki H, Higuchi K, Shimada A, Takeda T, Nakakuki K: Genetic analysis of murine senile amyloidosis. Lab Invest. 1993, 68 (3): 332-337.
CAS
Google Scholar
Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, Guo Y, Feng B, Li H, Lu Y, Fang X, Liang H, Du Z, Li D, Zhao Y, Hu Y, Yang Z, Zheng H, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, Duan J, Zhou Y, Qin J, Ma L: The diploid genome sequence of an Asian individual. Nature. 2008, 456 (7218): 60-65. 10.1038/nature07484.
PubMed Central
CAS
Google Scholar
Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM: The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008, 452 (7189): 872-876. 10.1038/nature06884.
CAS
Google Scholar
Li Y, Vinckenbosch N, Tian G, Huerta-Sanchez E, Jiang T, Jiang H, Albrechtsen A, Andersen G, Cao H, Korneliussen T, Grarup N, Guo Y, Hellman I, Jin X, Li Q, Liu J, Liu X, Sparso T, Tang M, Wu H, Wu R, Yu C, Zheng H, Astrup A, Bolund L, Holmkvist J, Jorgensen T, Kristiansen K, Schmitz O, Schwartz TW: Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet. 2010, 42 (11): 969-972. 10.1038/ng.680.
CAS
Google Scholar
Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J: Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009, 461 (7261): 272-276. 10.1038/nature08250.
PubMed Central
CAS
Google Scholar
Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D, Tuysuz B, Caglayan AO, Gokben S, Kaymakcalan H, Barak T, Bakircioglu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S, Dincer A, Johnson MH, Bronen RA, Kocer N, Per H, Mane S, Pamir MN, Yalcinkaya C, Kumandas S, Topcu M, Ozmen M, Sestan N: Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010, 467 (7312): 207-210. 10.1038/nature09327.
PubMed Central
CAS
Google Scholar
Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ: Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010, 42 (1): 30-35. 10.1038/ng.499.
PubMed Central
CAS
Google Scholar
Feng BJ, Tavtigian SV, Southey MC, Goldgar DE: Design considerations for massively parallel sequencing studies of complex human disease. PLoS One. 2011, 6 (8): e23221-10.1371/journal.pone.0023221.
PubMed Central
CAS
Google Scholar
Jakovcevski M, Schachner M, Morellini F: Individual variability in the stress response of C57BL/6J male mice correlates with trait anxiety. Genes Brain Behav. 2008, 7 (2): 235-243. 10.1111/j.1601-183X.2007.00345.x.
CAS
Google Scholar
Watkins-Chow DE, Pavan WJ: Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. Genome Res. 2008, 18 (1): 60-66.
PubMed Central
CAS
Google Scholar
Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M, Furlotte NA, Eskin E, Nellaker C, Whitley H, Cleak J, Janowitz D, Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R: Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011, 477 (7364): 289-294. 10.1038/nature10413.
PubMed Central
CAS
Google Scholar
de Magalhaes JP, Toussaint O: GenAge: a genomic and proteomic network map of human ageing. FEBS Lett. 2004, 571 (1–3): 243-247.
CAS
Google Scholar
Mori M, Toyokuni S, Kondo S, Kasai H, Naiki H, Toichi E, Hosokawa M, Higuchi K: Spontaneous loss-of-function mutations of the 8-oxoguanine DNA glycosylase gene in mice and exploration of the possible implication of the gene in senescence. Free Radic Biol Med. 2001, 30 (10): 1130-1136. 10.1016/S0891-5849(01)00511-1.
CAS
Google Scholar
Nash HM, Bruner SD, Scharer OD, Kawate T, Addona TA, Spooner E, Lane WS, Verdine GL: Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol. 1996, 6 (8): 968-980. 10.1016/S0960-9822(02)00641-3.
CAS
Google Scholar
Thomas D, Scot AD, Barbey R, Padula M, Boiteux S: Inactivation of OGG1 increases the incidence of G . C-->T . A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol Gen Genet. 1997, 254 (2): 171-178. 10.1007/s004380050405.
CAS
Google Scholar
Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999, 401 (6750): 301-304. 10.1038/45843.
CAS
Google Scholar
Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y: Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980, 29 (1): 1-13.
CAS
Google Scholar
Threadgill DW, Miller DR, Churchill GA, de Villena FP: The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J. 2011, 52 (1): 24-31. 10.1093/ilar.52.1.24.
CAS
Google Scholar
Takeda T: Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging. 1999, 20 (2): 105-110. 10.1016/S0197-4580(99)00008-1.
CAS
Google Scholar
Gillespie CS, Sherman DL, Blair GE, Brophy PJ: Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron. 1994, 12 (3): 497-508. 10.1016/0896-6273(94)90208-9.
CAS
Google Scholar
Guilbot A, Williams A, Ravise N, Verny C, Brice A, Sherman DL, Brophy PJ, LeGuern E, Delague V, Bareil C, Megarbane A, Claustres M: A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. Hum Mol Genet. 2001, 10 (4): 415-421. 10.1093/hmg/10.4.415.
CAS
Google Scholar
Otagiri T, Sugai K, Kijima K, Arai H, Sawaishi Y, Shimohata M, Hayasaka K: Periaxin mutation in Japanese patients with Charcot-Marie-Tooth disease. J Hum Genet. 2006, 51 (7): 625-628. 10.1007/s10038-006-0408-3.
CAS
Google Scholar
Gillespie CS, Sherman DL, Fleetwood-Walker SM, Cottrell DF, Tait S, Garry EM, Wallace VC, Ure J, Griffiths IR, Smith A, Brophy PJ: Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron. 2000, 26 (2): 523-531. 10.1016/S0896-6273(00)81184-8.
CAS
Google Scholar
Dingwall C, Sharnick SV, Laskey RA: A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell. 1982, 30 (2): 449-458. 10.1016/0092-8674(82)90242-2.
CAS
Google Scholar
Sherman DL, Brophy PJ: A tripartite nuclear localization signal in the PDZ-domain protein L-periaxin. J Biol Chem. 2000, 275 (7): 4537-4540. 10.1074/jbc.275.7.4537.
CAS
Google Scholar
Zhou Q, Ruiz-Lozano P, Martone ME, Chen J: Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem. 1999, 274 (28): 19807-19813. 10.1074/jbc.274.28.19807.
CAS
Google Scholar
Selcen D, Engel AG: Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann Neurol. 2005, 57 (2): 269-276. 10.1002/ana.20376.
CAS
Google Scholar
Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, Lin JH, Vu TM, Zhou Q, Bowles KR, Di Lenarda A, Schimmenti L, Fox M, Chrisco MA, Murphy RT, McKenna W, Elliott P, Bowles NE, Chen J, Valle G, Towbin JA: Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol. 2003, 42 (11): 2014-2027. 10.1016/j.jacc.2003.10.021.
CAS
Google Scholar
Yamashita Y, Matsuura T, Shinmi J, Amakusa Y, Masuda A, Ito M, Kinoshita M, Furuya H, Abe K, Ibi T, Sahashi K, Ohno K: Four parameters increase the sensitivity and specificity of the exon array analysis and disclose 25 novel aberrantly spliced exons in myotonic dystrophy. J Hum Genet. 2012, 57 (6): 368-374. 10.1038/jhg.2012.37.
CAS
Google Scholar
Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA: Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol. 1991, 115 (4): 1077-1089. 10.1083/jcb.115.4.1077.
CAS
Google Scholar
Bennett TM, Mackay DS, Knopf HL, Shiels A: A novel missense mutation in the gene for gap-junction protein alpha3 (GJA3) associated with autosomal dominant "nuclear punctate" cataracts linked to chromosome 13q. Mol Vis. 2004, 10: 376-382.
CAS
Google Scholar
Bennett TM, Shiels A: A recurrent missense mutation in GJA3 associated with autosomal dominant cataract linked to chromosome 13q. Mol Vis. 2011, 17: 2255-2262.
PubMed Central
CAS
Google Scholar
Matsushita M, Tsuboyama T, Kasai R, Okumura H, Yamamuro T, Higuchi K, Kohno A, Yonezu T, Utani A, Umezawa M, Takeda T: Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol. 1986, 125 (2): 276-283.
PubMed Central
CAS
Google Scholar
Tanaka S, Shiokawa K, Miyaishi O: Effects of housing and nutritions condition on the reproductions of SAMR1, SAMP6 and SAMP8 at NILS aging farm. The Senescence-Accelerated Mouse (SAM): An Animal Model of Senescence. Edited by: Nomura Y. 2004, Amsterdam: Elsevier B. V, 167-173.
Google Scholar
Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T: IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990, 145 (10): 3297-3303.
CAS
Google Scholar
Takahashi N, Udagawa N, Suda T: A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun. 1999, 256 (3): 449-455. 10.1006/bbrc.1999.0252.
CAS
Google Scholar
Thomson BM, Mundy GR, Chambers TJ: Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol. 1987, 138 (3): 775-779.
CAS
Google Scholar
Thomson BM, Saklatvala J, Chambers TJ: Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteoclasts. J Exp Med. 1986, 164 (1): 104-112. 10.1084/jem.164.1.104.
CAS
Google Scholar
Korycka J, Lach A, Heger E, Boguslawska DM, Wolny M, Toporkiewicz M, Augoff K, Korzeniewski J, Sikorski AF: Human DHHC proteins: a spotlight on the hidden player of palmitoylation. Eur J Cell Biol. 2011, 91 (2): 107-117.
Google Scholar
Saleem AN, Chen YH, Baek HJ, Hsiao YW, Huang HW, Kao HJ, Liu KM, Shen LF, Song IW, Tu CP, Wu JY, Kikuchi T, Justice MJ, Yen JJ, Chen YT: Mice with alopecia, osteoporosis, and systemic amyloidosis due to mutation in Zdhhc13, a gene coding for palmitoyl acyltransferase. PLoS Genet. 2010, 6 (6): e1000985-10.1371/journal.pgen.1000985.
PubMed Central
Google Scholar
Leong WF, Zhou T, Lim GL, Li B: Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression. PLoS One. 2009, 4 (1): e4135-10.1371/journal.pone.0004135.
PubMed Central
Google Scholar
Miyamoto M, Kiyota Y, Nishiyama M, Nagaoka A: Senescence-accelerated mouse (SAM): age-related reduced anxiety-like behavior in the SAM-P/8 strain. Physiol Behav. 1992, 51 (5): 979-985. 10.1016/0031-9384(92)90081-C.
CAS
Google Scholar
Miyamoto M, Kiyota Y, Yamazaki N, Nagaoka A, Matsuo T, Nagawa Y, Takeda T: Age-related changes in learning and memory in the senescence-accelerated mouse (SAM). Physiol Behav. 1986, 38 (3): 399-406. 10.1016/0031-9384(86)90112-5.
CAS
Google Scholar
Xie Q, Lin T, Zhang Y, Zheng J, Bonanno JA: Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. J Biol Chem. 2005, 280 (20): 19673-19681. 10.1074/jbc.M409517200.
CAS
Google Scholar
Carswell EA, Wanebo HJ, Old LJ, Boyse EA: Immunogenic properties of reticulum cell sarcomas of SJL/J mice. J Natl Cancer Inst. 1970, 44 (6): 1281-1288.
CAS
Google Scholar
Holmes MC, Burnet FM: The Natural History of Autoimmune Disease in Nzb Mice. A Comparison with the Pattern of Human Autoimmune Manifestations. Ann Intern Med. 1963, 59: 265-276. 10.7326/0003-4819-59-3-265.
CAS
Google Scholar
Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R: Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol. 2000, 88 (4): 1321-1326.
CAS
Google Scholar
Verdu E, Ceballos D, Vilches JJ, Navarro X: Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000, 5 (4): 191-208. 10.1046/j.1529-8027.2000.00026.x.
CAS
Google Scholar
Hosokawa M, Takeshita S, Higuchi K, Shimizu K, Irino M, Toda K, Honma A, Matsumura A, Yasuhira K, Takeda T: Cataract and other ophthalmic lesions in senescence accelerated mouse (SAM). Morphology and incidence of senescence associated ophthalmic changes in mice. Exp Eye Res. 1984, 38 (2): 105-114. 10.1016/0014-4835(84)90095-2.
CAS
Google Scholar
Nishimoto H, Uga S, Miyata M, Ishikawa S, Yamashita K: Morphological study of the cataractous lens of the senescence accelerated mouse. Graefes Arch Clin Exp Ophthalmol. 1993, 231 (12): 722-728. 10.1007/BF00919288.
CAS
Google Scholar
Mangashetti LS, Khapli SM, Wani MR: IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappa B and Ca2+ signaling. J Immunol. 2005, 175 (2): 917-925.
CAS
Google Scholar
Sands BE, Kaplan GG: The role of TNFalpha in ulcerative colitis. J Clin Pharmacol. 2007, 47 (8): 930-941. 10.1177/0091270007301623.
CAS
Google Scholar
Fujibayashi Y, Yamamoto S, Waki A, Konishi J, Yonekura Y: Increased mitochondrial DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress brain. Neurosci Lett. 1998, 254 (2): 109-112. 10.1016/S0304-3940(98)00667-3.
CAS
Google Scholar
Cheung EC, Joza N, Steenaart NA, McClellan KA, Neuspiel M, McNamara S, MacLaurin JG, Rippstein P, Park DS, Shore GC, McBride HM, Penninger JM, Slack RS: Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J. 2006, 25 (17): 4061-4073. 10.1038/sj.emboj.7601276.
PubMed Central
CAS
Google Scholar
Takeda T: Effects of environment on life span and pathobiological phenotypes in senescence-accelerated mice. The Senescence-Accelerated Mouse (SAM): An Animal Model of Senescence. Edited by: Nomura Y. 2004, Amsterdam: Elsevier B. V, 3-12.
Google Scholar
de Magalhaes JP, Cabral JA, Magalhaes D: The influence of genes on the aging process of mice: a statistical assessment of the genetics of aging. Genetics. 2005, 169 (1): 265-274.
PubMed Central
CAS
Google Scholar
Chiba Y, Yamashita Y, Ueno M, Fujisawa H, Hirayoshi K, Hohmura K, Tomimoto H, Akiguchi I, Satoh M, Shimada A, Hosokawa M: Cultured murine dermal fibroblast-like cells from senescence-accelerated mice as in vitro models for higher oxidative stress due to mitochondrial alterations. J Gerontol A Biol Sci Med Sci. 2005, 60 (9): 1087-1098. 10.1093/gerona/60.9.1087.
Google Scholar
Hosokawa M, Ashida Y, Nishikawa T, Takeda T: Accelerated aging of dermal fibroblast-like cells from senescence-accelerated mouse (SAM). 1. Acceleration of population aging in vitro. Mech Ageing Dev. 1994, 74 (1–2): 65-77.
CAS
Google Scholar
Lecka-Czernik B, Moerman EJ, Shmookler Reis RJ, Lipschitz DA: Cellular and molecular biomarkers indicate precocious in vitro senescence in fibroblasts from SAMP6 mice. Evidence supporting a murine model of premature senescence and osteopenia. J Gerontol A Biol Sci Med Sci. 1997, 52 (6): B331-
CAS
Google Scholar
Fairfield H, Gilbert GJ, Barter M, Corrigan RR, Curtain M, Ding Y, D'Ascenzo M, Gerhardt DJ, He C, Huang W, Richmond T, Rowe L, Probst FJ, Bergstrom DE, Murray SA, Bult C, Richardson J, Kile BT, Gut I, Hager J, Sigurdsson S, Mauceli E, Di Palma F, Lindblad-Toh K, Cunningham ML, Cox TC, Justice MJ, Spector MS, Lowe SW, Albert T: Mutation discovery in mice by whole exome sequencing. Genome Biol. 2011, 12 (9): R86-10.1186/gb-2011-12-9-r86.
PubMed Central
CAS
Google Scholar
Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F, Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L, Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S, Dong X, Ernst J: An integrated encyclopedia of DNA elements in the human genome. Nature. 2012, 489 (7414): 57-74. 10.1038/nature11247.
CAS
Google Scholar
Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M: Large-scale copy number polymorphism in the human genome. Science. 2004, 305 (5683): 525-528. 10.1126/science.1098918.
CAS
Google Scholar
Gray VE, Kukurba KR, Kumar S: Performance of computational tools in evaluating the functional impact of laboratory-induced amino acid mutations. Bioinformatics. 2012, 28 (16): 2093-2096. 10.1093/bioinformatics/bts336.
PubMed Central
CAS
Google Scholar
Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31 (13): 3812-3814. 10.1093/nar/gkg509.
PubMed Central
CAS
Google Scholar
Ramensky V, Bork P, Sunyaev S: Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002, 30 (17): 3894-3900. 10.1093/nar/gkf493.
PubMed Central
CAS
Google Scholar
Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005, 33 (Web Server issue): W741-W748.
PubMed Central
CAS
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011, 7: 539-
PubMed Central
Google Scholar
Hosokawa T, Hosono M, Hanada K, Aoike A, Kawai K, Takeda T: Immune responses in newly developed short-lived SAM mice. Selectively impaired T-helper cell activity in in vitro antibody response. Immunology. 1987, 62 (3): 425-429.
PubMed Central
CAS
Google Scholar
Hosokawa T, Hosono M, Higuchi K, Aoike A, Kawai K, Takeda T: Immune responses in newly developed short-lived SAM mice. I. Age-associated early decline in immune activities of cultured spleen cells. Immunology. 1987, 62 (3): 419-423.
PubMed Central
CAS
Google Scholar
Kurozumi M, Matsushita T, Hosokawa M, Takeda T: Age-related changes in lung structure and function in the senescence-accelerated mouse (SAM): SAM-P/1 as a new murine model of senile hyperinflation of lung. Am J Respir Crit Care Med. 1994, 149 (3 Pt 1): 776-782.
CAS
Google Scholar
Ogawa H: Renal lesions of the senescence accelerated mouse (SAM), with special emphasis on senility. Nihon Jinzo Gakkai Shi. 1988, 30 (9): 1063-1065.
CAS
Google Scholar
Takeshita S, Hosokawa M, Irino M, Higuchi K, Shimizu K, Yasuhira K, Takeda T: Spontaneous age-associated amyloidosis in senescence-accelerated mouse (SAM). Mech Ageing Dev. 1982, 20 (1): 13-23. 10.1016/0047-6374(82)90070-7.
CAS
Google Scholar
Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ: ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 2005, 434 (7033): 648-652. 10.1038/nature03417.
CAS
Google Scholar
Malfait AM, Liu RQ, Ijiri K, Komiya S, Tortorella MD: Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem. 2002, 277 (25): 22201-22208. 10.1074/jbc.M200431200.
CAS
Google Scholar
Li J, Anemaet W, Diaz MA, Buchanan S, Tortorella M, Malfait AM, Mikecz K, Sandy JD, Plaas A: Knockout of ADAMTS5 does not eliminate cartilage aggrecanase activity but abrogates joint fibrosis and promotes cartilage aggrecan deposition in murine osteoarthritis models. J Orthop Res. 2011, 29 (4): 516-522. 10.1002/jor.21215.
CAS
Google Scholar
Chen WH, Hosokawa M, Tsuboyama T, Ono T, Iizuka T, Takeda T: Age-related changes in the temporomandibular joint of the senescence accelerated mouse. SAM-P/3 as a new murine model of degenerative joint disease. Am J Pathol. 1989, 135 (2): 379-385.
PubMed Central
CAS
Google Scholar
Kozyrev SV, Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MV, Sanchez E, Gunnarsson I, Svenungsson E, Sturfelt G, Jonsen A, Truedsson L, Pons-Estel BA, Witte T, D'Alfonso S, Barizzone N, Danieli MG, Gutierrez C, Suarez A, Junker P, Laustrup H, Gonzalez-Escribano MF, Martin J, Abderrahim H, Alarcon-Riquelme ME: Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet. 2008, 40 (2): 211-216. 10.1038/ng.79.
CAS
Google Scholar
Orozco G, Abelson AK, Gonzalez-Gay MA, Balsa A, Pascual-Salcedo D, Garcia A, Fernandez-Gutierrez B, Petersson I, Pons-Estel B, Eimon A, Paira S, Scherbarth HR, Alarcon-Riquelme M, Martin J: Study of functional variants of the BANK1 gene in rheumatoid arthritis. Arthritis Rheum. 2009, 60 (2): 372-379. 10.1002/art.24244.
CAS
Google Scholar
Shimada A, Ohta A, Akiguchi I, Takeda T: Inbred SAM-P/10 as a mouse model of spontaneous, inherited brain atrophy. J Neuropathol Exp Neurol. 1992, 51 (4): 440-450. 10.1097/00005072-199207000-00006.
CAS
Google Scholar
Shimada A, Ohta A, Akiguchi I, Takeda T: Age-related deterioration in conditional avoidance task in the SAM-P/10 mouse, an animal model of spontaneous brain atrophy. Brain Res. 1993, 608 (2): 266-272. 10.1016/0006-8993(93)91467-7.
CAS
Google Scholar
Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature. 1989, 341 (6237): 68-72. 10.1038/341068a0.
CAS
Google Scholar
de Bold AJ: Atrial natriuretic factor: a hormone produced by the heart. Science. 1985, 230 (4727): 767-770. 10.1126/science.2932797.
CAS
Google Scholar
Sudoh T, Kangawa K, Minamino N, Matsuo H: A new natriuretic peptide in porcine brain. Nature. 1988, 332 (6159): 78-81. 10.1038/332078a0.
CAS
Google Scholar
Simonnet G, Allard M, Legendre P, Gabrion J, Vincent JD: Characteristics and specific localization of receptors for atrial natriuretic peptides at non-neuronal cells in cultured mouse spinal cord cells. Neuroscience. 1989, 29 (1): 189-199. 10.1016/0306-4522(89)90342-4.
CAS
Google Scholar
Teoh R, Kum W, Cockram CS, Young JD, Nicholls MG: Mouse astrocytes possess specific ANP receptors which are linked to cGMP production. Clin Exp Pharmacol Physiol. 1989, 16 (4): 323-327. 10.1111/j.1440-1681.1989.tb01566.x.
CAS
Google Scholar
Hasegawa-Ishii S, Takei S, Inaba M, Umegaki H, Chiba Y, Furukawa A, Kawamura N, Hosokawa M, Shimada A: Defects in cytokine-mediated neuroprotective glial responses to excitotoxic hippocampal injury in senescence-accelerated mouse. Brain Behav Immun. 2011, 25 (1): 83-100. 10.1016/j.bbi.2010.08.006.
CAS
Google Scholar
Zhu BH, Ueno M, Matsushita T, Fujisawa H, Seriu N, Nishikawa T, Nishimura Y, Hosokawa M: Effects of aging and blood pressure on the structure of the thoracic aorta in SAM mice: a model of age-associated degenerative vascular changes. Exp Gerontol. 2001, 36 (1): 111-124. 10.1016/S0531-5565(00)00179-0.
CAS
Google Scholar
Beyer EC, Paul DL, Goodenough DA: Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987, 105 (6 Pt1): 2621-2629.
CAS
Google Scholar
Beyer EC, Kistler J, Paul DL, Goodenough DA: Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol. 1989, 108 (2): 595-605. 10.1083/jcb.108.2.595.
CAS
Google Scholar
Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH: Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med. 1995, 332 (20): 1323-1329. 10.1056/NEJM199505183322002.
CAS
Google Scholar
Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH: Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res. 2001, 479 (1–2): 173-186.
CAS
Google Scholar
Blackburn JP, Connat JL, Severs NJ, Green CR: Connexin43 gap junction levels during development of the thoracic aorta are temporally correlated with elastic laminae deposition and increased blood pressure. Cell Biol Int. 1997, 21 (2): 87-97. 10.1006/cbir.1996.0122.
CAS
Google Scholar
Little TL, Beyer EC, Duling BR: Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol. 1995, 268 (2 Pt 2): H729-H739.
CAS
Google Scholar
Liao Y, Regan CP, Manabe I, Owens GK, Day KH, Damon DN, Duling BR: Smooth muscle-targeted knockout of connexin43 enhances neointimal formation in response to vascular injury. Arterioscler Thromb Vasc Biol. 2007, 27 (5): 1037-1042. 10.1161/ATVBAHA.106.137182.
CAS
Google Scholar