Chen JH, Liu C, You L, Simmons CA: Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2009, 43 (1): 108-118.
PubMed
Google Scholar
Rodriguez JI, Garcia-Alix A, Palacios J, Paniagua R: Changes in the long bones due to fetal immobility caused by neuromuscular disease. A radiographic and histological study. J Bone Joint Surg Am. 1988, 70 (7): 1052-1060.
CAS
PubMed
Google Scholar
Rodriguez JI, Palacios J, Garcia-Alix A, Pastor I, Paniagua R: Effects of immobilization on fetal bone development. A morphometric study in newborns with congenital neuromuscular diseases with intrauterine onset. Calcif Tissue Int. 1988, 43 (6): 335-339. 10.1007/BF02553275.
CAS
PubMed
Google Scholar
Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P: Mechanobiology of embryonic skeletal development: Insights from animal models. Birth Defects Res C Embryo Today. 2010, 90 (3): 203-213. 10.1002/bdrc.20184.
CAS
PubMed
Google Scholar
Rolfe R, Roddy K, Murphy P: Mechanical regulation of skeletal development. Curr Osteoporos Rep. 2013, 11 (2): 107-116. 10.1007/s11914-013-0137-4.
PubMed
Google Scholar
Mammoto T, Mammoto A, Torisawa YS, Tat T, Gibbs A, Derda R, Mannix R, de Bruijn M, Yung CW, Huh D, et al: Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev Cell. 2011, 21 (4): 758-769. 10.1016/j.devcel.2011.07.006.
CAS
PubMed Central
PubMed
Google Scholar
Mammoto A, Mammoto T, Ingber DE: Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci. 2012, 125 (Pt 13): 3061-3073.
CAS
PubMed Central
PubMed
Google Scholar
Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountree RB, et al: Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009, 16 (5): 734-743. 10.1016/j.devcel.2009.04.013.
CAS
PubMed
Google Scholar
Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P: Developing bones are differentially affected by compromised skeletal muscle formation. Bone. 2010, 46 (5): 1275-1285. 10.1016/j.bone.2009.11.026.
PubMed Central
PubMed
Google Scholar
Nowlan NC, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P: Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech Model Mechanobiol. 2012, 11 (1–2): 207-219.
PubMed
Google Scholar
Franz T, Kothary R, Surani MA, Halata Z, Grim M: The Splotch mutation interferes with muscle development in the limbs. Anat Embryol (Berl). 1993, 187 (2): 153-160.
CAS
Google Scholar
Vogan KJ, Epstein DJ, Trasler DG, Gros P: The splotch-delayed (Spd) mouse mutant carries a point mutation within the paired box of the Pax-3 gene. Genomics. 1993, 17 (2): 364-369. 10.1006/geno.1993.1333.
CAS
PubMed
Google Scholar
Sharir A, Stern T, Rot C, Shahar R, Zelzer E: Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011, 138 (15): 3247-3259. 10.1242/dev.063768.
CAS
PubMed
Google Scholar
Roddy KA, Kelly GM, van Es MH, Murphy P, Prendergast PJ: Dynamic patterns of mechanical stimulation co-localise with growth and cell proliferation during morphogenesis in the avian embryonic knee joint. J Biomech. 2011, 44 (1): 143-149. 10.1016/j.jbiomech.2010.08.039.
PubMed
Google Scholar
Nowlan NC, Prendergast PJ, Murphy P: Identification of mechanosensitive genes during embryonic bone formation. PLoS Comput Biol. 2008, 4 (12): e1000250-10.1371/journal.pcbi.1000250.
PubMed Central
PubMed
Google Scholar
Roddy KA, Prendergast PJ, Murphy P: Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS One. 2011, 6 (2): e17526-10.1371/journal.pone.0017526.
CAS
PubMed Central
PubMed
Google Scholar
Kavanagh E, Church VL, Osborne AC, Lamb KJ, Archer CW, Francis-West PH, Pitsillides AA: Differential regulation of GDF-5 and FGF-2/4 by immobilisation in ovo exposes distinct roles in joint formation. Dev Dyn. 2006, 235 (3): 826-834. 10.1002/dvdy.20679.
CAS
PubMed
Google Scholar
Patel MJ, Liu W, Sykes MC, Ward NE, Risin SA, Risin D, Jo H: Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J Cell Biochem. 2007, 101 (3): 587-599. 10.1002/jcb.21218.
CAS
PubMed
Google Scholar
Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, Duterque-Coquillaud M, Mallein-Gerin F: Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One. 2012, 7 (5): e36964-10.1371/journal.pone.0036964.
CAS
PubMed Central
PubMed
Google Scholar
Sironen RK, Karjalainen HM, Elo MA, Kaarniranta K, Torronen K, Takigawa M, Helminen HJ, Lammi MJ: cDNA array reveals mechanosensitive genes in chondrocytic cells under hydrostatic pressure. Biochim Biophys Acta. 2002, 1591 (1–3): 45-54.
CAS
PubMed
Google Scholar
Theiler K: The House Mouse. 1972, Berlin, Heidelberg, New York: Springer
Google Scholar
Malone JH, Oliver B: Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011, 9: 34-10.1186/1741-7007-9-34.
CAS
PubMed Central
PubMed
Google Scholar
Lahiry P, Lee LJ, Frey BJ, Rupar CA, Siu VM, Blencowe BJ, Hegele RA: Transcriptional profiling of endocrine cerebro-osteodysplasia using microarray and next-generation sequencing. PLoS One. 2011, 6 (9): e25400-10.1371/journal.pone.0025400.
CAS
PubMed Central
PubMed
Google Scholar
Bottomly D, Walter NA, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney M, McWeeney SK, Hitzemann R: Evaluating gene expression in C57BL/6 J and DBA/2 J mouse striatum using RNA-Seq and microarrays. PLoS One. 2011, 6 (3): e17820-10.1371/journal.pone.0017820.
CAS
PubMed Central
PubMed
Google Scholar
Kronenberg HM: Developmental regulation of the growth plate. Nature. 2003, 423 (6937): 332-336. 10.1038/nature01657.
CAS
PubMed
Google Scholar
Provot S, Schipani E: Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun. 2005, 328 (3): 658-665. 10.1016/j.bbrc.2004.11.068.
CAS
PubMed
Google Scholar
Benjamini YHY: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995, 57 (1): 289-300.
Google Scholar
da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4 (1): 44-57.
PubMed
Google Scholar
Beissbarth T, Speed TP: GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 2004, 20 (9): 1464-1465. 10.1093/bioinformatics/bth088.
CAS
PubMed
Google Scholar
Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, Okabe T, Ochiai T, Kamiya N, Rountree RB, et al: A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008, 316 (1): 62-73. 10.1016/j.ydbio.2008.01.012.
CAS
PubMed Central
PubMed
Google Scholar
Aigner T, Stove J: Collagens–major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev. 2003, 55 (12): 1569-1593. 10.1016/j.addr.2003.08.009.
CAS
PubMed
Google Scholar
Taher L, Collette NM, Murugesh D, Maxwell E, Ovcharenko I, Loots GG: Global gene expression analysis of murine limb development. PLoS One. 2011, 6 (12): e28358-10.1371/journal.pone.0028358.
CAS
PubMed Central
PubMed
Google Scholar
Wang L, Shao YY, Ballock RT: Carboxypeptidase Z (CPZ) links thyroid hormone and Wnt signaling pathways in growth plate chondrocytes. J Bone Miner Res. 2009, 24 (2): 265-273. 10.1359/jbmr.081014.
CAS
PubMed Central
PubMed
Google Scholar
Chen W, Qing H, He Y, Wang J, Zhu Z, Wang H: Gene expression patterns of osteocyte-like MLO-Y4 cells in response to cyclic compressive force stimulation. Cell Biol Int. 2010, 34 (5): 425-432. 10.1042/CBI20090061.
CAS
PubMed
Google Scholar
Klein-Nulend J, Roelofsen J, Semeins CM, Bronckers AL, Burger EH: Mechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures. J Cell Physiol. 1997, 170 (2): 174-181. 10.1002/(SICI)1097-4652(199702)170:2<174::AID-JCP9>3.0.CO;2-L.
CAS
PubMed
Google Scholar
Bohm J, Sustmann C, Wilhelm C, Kohlhase J: SALL4 is directly activated by TCF/LEF in the canonical Wnt signaling pathway. Biochem Biophys Res Commun. 2006, 348 (3): 898-907. 10.1016/j.bbrc.2006.07.124.
PubMed
Google Scholar
Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R: FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev. 2002, 16 (24): 3173-3185. 10.1101/gad.1035602.
CAS
PubMed Central
PubMed
Google Scholar
ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R: Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell. 2008, 3 (5): 508-518. 10.1016/j.stem.2008.09.013.
CAS
PubMed
Google Scholar
Wisniewska MB, Misztal K, Michowski W, Szczot M, Purta E, Lesniak W, Klejman ME, Dabrowski M, Filipkowski RK, Nagalski A, et al: LEF1/beta-catenin complex regulates transcription of the Cav3.1 calcium channel gene (Cacna1g) in thalamic neurons of the adult brain. J Neurosci. 2010, 30 (14): 4957-4969. 10.1523/JNEUROSCI.1425-09.2010.
CAS
PubMed
Google Scholar
Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, et al: Identification of a Wnt/Dvl/beta-Catenin – > Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002, 111 (5): 673-685. 10.1016/S0092-8674(02)01084-X.
CAS
PubMed
Google Scholar
Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, et al: Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 2002, 417 (6889): 664-667. 10.1038/nature756.
CAS
PubMed
Google Scholar
Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 1999, 96 (10): 5522-5527. 10.1073/pnas.96.10.5522.
CAS
PubMed Central
PubMed
Google Scholar
McGrew LL, Takemaru K, Bates R, Moon RT: Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech Dev. 1999, 87 (1–2): 21-32.
CAS
PubMed
Google Scholar
Tice DA, Szeto W, Soloviev I, Rubinfeld B, Fong SE, Dugger DL, Winer J, Williams PM, Wieand D, Smith V, et al: Synergistic induction of tumor antigens by Wnt-1 signaling and retinoic acid revealed by gene expression profiling. J Biol Chem. 2002, 277 (16): 14329-14335. 10.1074/jbc.M200334200.
CAS
PubMed
Google Scholar
Kawakami Y, Wada N, Nishimatsu S, Nohno T: Involvement of frizzled-10 in Wnt-7a signaling during chick limb development. Dev Growth Differ. 2000, 42 (6): 561-569. 10.1046/j.1440-169x.2000.00545.x.
CAS
PubMed
Google Scholar
Hofmann M, Schuster-Gossler K, Watabe-Rudolph M, Aulehla A, Herrmann BG, Gossler A: WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes Dev. 2004, 18 (22): 2712-2717. 10.1101/gad.1248604.
CAS
PubMed Central
PubMed
Google Scholar
Hasenpusch-Theil K, Magnani D, Amaniti EM, Han L, Armstrong D, Theil T: Transcriptional analysis of Gli3 mutants identifies Wnt target genes in the developing hippocampus. Cereb Cortex. 2012, 22 (12): 2878-2893. 10.1093/cercor/bhr365.
PubMed Central
PubMed
Google Scholar
Mahmoudi T, Li VS, Ng SS, Taouatas N, Vries RG, Mohammed S, Heck AJ, Clevers H: The kinase TNIK is an essential activator of Wnt target genes. EMBO J. 2009, 28 (21): 3329-3340. 10.1038/emboj.2009.285.
CAS
PubMed Central
PubMed
Google Scholar
Boon EM, van der Neut R, van de Wetering M, Clevers H, Pals ST: Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res. 2002, 62 (18): 5126-5128.
CAS
PubMed
Google Scholar
Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, Clevers H, Pals ST: Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999, 154 (2): 515-523. 10.1016/S0002-9440(10)65297-2.
CAS
PubMed Central
PubMed
Google Scholar
Estrach S, Ambler CA, Lo Celso C, Hozumi K, Watt FM: Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development. 2006, 133 (22): 4427-4438. 10.1242/dev.02644.
CAS
PubMed
Google Scholar
Im J, Kim H, Kim S, Jho EH: Wnt/beta-catenin signaling regulates expression of PRDC, an antagonist of the BMP-4 signaling pathway. Biochem Biophys Res Commun. 2007, 354 (1): 296-301. 10.1016/j.bbrc.2006.12.205.
CAS
PubMed
Google Scholar
Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y, Furukawa Y: Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res. 2001, 12 (11–12): 469-476.
CAS
PubMed
Google Scholar
Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, Hurley M, Guo C, Boskey A, Sun L, et al: Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet. 2005, 37 (9): 945-952. 10.1038/ng1614.
CAS
PubMed
Google Scholar
Nam JS, Park E, Turcotte TJ, Palencia S, Zhan X, Lee J, Yun K, Funk WD, Yoon JK: Mouse R-spondin2 is required for apical ectodermal ridge maintenance in the hindlimb. Dev Biol. 2007, 311 (1): 124-135. 10.1016/j.ydbio.2007.08.023.
CAS
PubMed Central
PubMed
Google Scholar
Abed E, Chan TF, Delalandre A, Martel-Pelletier J, Pelletier JP, Lajeunesse D: R-spondins are newly recognized players in osteoarthritis that regulate Wnt signaling in osteoblasts. Arthritis Rheum. 2011, 63 (12): 3865-3875. 10.1002/art.30625.
CAS
PubMed
Google Scholar
Lescher B, Haenig B, Kispert A: sFRP-2 is a target of the Wnt-4 signaling pathway in the developing metanephric kidney. Dev Dyn. 1998, 213 (4): 440-451. 10.1002/(SICI)1097-0177(199812)213:4<440::AID-AJA9>3.0.CO;2-6.
CAS
PubMed
Google Scholar
Nam JS, Turcotte TJ, Smith PF, Choi S, Yoon JK: Mouse cristin/R-spondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate beta-catenin-dependent gene expression. J Biol Chem. 2006, 281 (19): 13247-13257. 10.1074/jbc.M508324200.
CAS
PubMed
Google Scholar
Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ, et al: Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 2006, 38 (5): 531-539. 10.1038/ng1777.
CAS
PubMed
Google Scholar
Heymer J, Ruther U: Syndactyly of Ft/+ mice correlates with an imbalance in bmp4 and fgf8 expression. Mech Dev. 1999, 88 (2): 173-181. 10.1016/S0925-4773(99)00186-0.
CAS
PubMed
Google Scholar
Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, Johnson RL, Tabin CJ, Schweitzer R, Zelzer E: Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell. 2009, 17 (6): 861-873. 10.1016/j.devcel.2009.10.010.
PubMed Central
PubMed
Google Scholar
Leclerc N, Luppen CA, Ho VV, Nagpal S, Hacia JG, Smith E, Frenkel B: Gene expression profiling of glucocorticoid-inhibited osteoblasts. J Mol Endocrinol. 2004, 33 (1): 175-193. 10.1677/jme.0.0330175.
CAS
PubMed
Google Scholar
Abe Y, Kita Y, Niikura T: Mammalian Gup1, a homolog of Saccharomyces cerevisiae glycerol uptake/transporter 1, acts as a negative regulator for N-terminal palmitoylation of Sonic hedgehog. FEBS J. 2008, 275 (2): 318-331. 10.1111/j.1742-4658.2007.06202.x.
CAS
PubMed
Google Scholar
Chuang PT, McMahon AP: Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature. 1999, 397 (6720): 617-621. 10.1038/17611.
CAS
PubMed
Google Scholar
Bellusci S, Furuta Y, Rush MG, Henderson R, Winnier G, Hogan BL: Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development. 1997, 124 (1): 53-63.
CAS
PubMed
Google Scholar
Gross I, Bassit B, Benezra M, Licht JD: Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem. 2001, 276 (49): 46460-46468. 10.1074/jbc.M108234200.
CAS
PubMed
Google Scholar
Johnson CW, Hernandez-Lagunas L, Feng W, Melvin VS, Williams T, Artinger KB: Vgll2a is required for neural crest cell survival during zebrafish craniofacial development. Dev Biol. 2011, 357 (1): 269-281. 10.1016/j.ydbio.2011.06.034.
CAS
PubMed Central
PubMed
Google Scholar
Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W, Song H: Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev. 2010, 24 (3): 290-300. 10.1101/gad.1865310.
PubMed Central
PubMed
Google Scholar
Katoh M: Function and cancer genomics of FAT family genes (review). Int J Oncol. 2012, 41 (6): 1913-1918.
CAS
PubMed Central
PubMed
Google Scholar
Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M: DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci. 2005, 8 (7): 873-880. 10.1038/nn1492.
CAS
PubMed
Google Scholar
Shimizu K, Chiba S, Hosoya N, Kumano K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hirai H: Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol Cell Biol. 2000, 20 (18): 6913-6922. 10.1128/MCB.20.18.6913-6922.2000.
CAS
PubMed Central
PubMed
Google Scholar
Fior R, Henrique D: A novel hes5/hes6 circuitry of negative regulation controls Notch activity during neurogenesis. Dev Biol. 2005, 281 (2): 318-333. 10.1016/j.ydbio.2005.03.017.
CAS
PubMed
Google Scholar
Zhang K, Wong P, Zhang L, Jacobs B, Borden EC, Aster JC, Bedogni B: A Notch1-neuregulin1 autocrine signaling loop contributes to melanoma growth. Oncogene. 2012, 31 (43): 4609-4618. 10.1038/onc.2011.606.
CAS
PubMed Central
PubMed
Google Scholar
Kume T, Jiang H, Topczewska JM, Hogan BL: The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev. 2001, 15 (18): 2470-2482. 10.1101/gad.907301.
CAS
PubMed Central
PubMed
Google Scholar
Bizzoca A, Corsi P, Polizzi A, Pinto MF, Xenaki D, Furley AJ, Gennarini G: F3/Contactin acts as a modulator of neurogenesis during cerebral cortex development. Dev Biol. 2012, 365 (1): 133-151. 10.1016/j.ydbio.2012.02.011.
CAS
PubMed
Google Scholar
Sodek J, Ganss B, McKee MD: Osteopontin. Crit Rev Oral Biol Med. 2000, 11 (3): 279-303. 10.1177/10454411000110030101.
CAS
PubMed
Google Scholar
Woods A, Wang G, Beier F: Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol. 2007, 213 (1): 1-8. 10.1002/jcp.21110.
CAS
PubMed
Google Scholar
Ikegawa M, Han H, Okamoto A, Matsui R, Tanaka M, Omi N, Miyamae M, Toguchida J, Tashiro K: Syndactyly and preaxial synpolydactyly in the single Sfrp2 deleted mutant mice. Dev Dyn. 2008, 237 (9): 2506-2517. 10.1002/dvdy.21655.
CAS
PubMed
Google Scholar
Church V, Nohno T, Linker C, Marcelle C, Francis-West P: Wnt regulation of chondrocyte differentiation. J Cell Sci. 2002, 115 (Pt 24): 4809-4818.
CAS
PubMed
Google Scholar
Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y: Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004, 18 (19): 2404-2417. 10.1101/gad.1230704.
CAS
PubMed Central
PubMed
Google Scholar
Hartmann C, Tabin CJ: Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000, 127 (14): 3141-3159.
CAS
PubMed
Google Scholar
Witte F, Dokas J, Neuendorf F, Mundlos S, Stricker S: Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation. Gene Expr Patterns. 2009, 9 (4): 215-223. 10.1016/j.gep.2008.12.009.
CAS
PubMed
Google Scholar
Kim IS, Otto F, Zabel B, Mundlos S: Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 1999, 80 (2): 159-170. 10.1016/S0925-4773(98)00210-X.
CAS
PubMed
Google Scholar
Karsenty G, Kronenberg HM, Settembre C: Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009, 25: 629-648. 10.1146/annurev.cellbio.042308.113308.
CAS
PubMed
Google Scholar
Pitsillides AA, Ashhurst DE: A critical evaluation of specific aspects of joint development. Dev Dyn. 2008, 237 (9): 2284-2294. 10.1002/dvdy.21654.
CAS
PubMed
Google Scholar
Cameron TL, Belluoccio D, Farlie PG, Brachvogel B, Bateman JF: Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol. 2009, 9: 20-10.1186/1471-213X-9-20.
PubMed Central
PubMed
Google Scholar
Sugars RV, Karner E, Petersson U, Ganss B, Wendel M: Transcriptome analysis of fetal metatarsal long bones by microarray, as a model for endochondral bone formation. Biochim Biophys Acta. 2006, 1763 (10): 1031-1039. 10.1016/j.bbamcr.2006.08.027.
CAS
PubMed
Google Scholar
Belluoccio D, Bernardo BC, Rowley L, Bateman JF: A microarray approach for comparative expression profiling of the discrete maturation zones of mouse growth plate cartilage. Biochim Biophys Acta. 2008, 1779 (5): 330-340. 10.1016/j.bbagrm.2008.02.010.
CAS
PubMed
Google Scholar
Hecht J, Seitz V, Urban M, Wagner F, Robinson PN, Stiege A, Dieterich C, Kornak U, Wilkening U, Brieske N, et al: Detection of novel skeletogenesis target genes by comprehensive analysis of a Runx2(-/-) mouse model. Gene Expr Patterns. 2007, 7 (1–2): 102-112.
CAS
PubMed
Google Scholar
Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, et al: A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011, 9 (1): e1000582-10.1371/journal.pbio.1000582.
CAS
PubMed Central
PubMed
Google Scholar
Olsen BR: Role of cartilage collagens in formation of the skeleton. Ann N Y Acad Sci. 1996, 785: 124-130.
CAS
PubMed
Google Scholar
Yakar S, Courtland HW, Clemmons D: IGF-1 and bone: New discoveries from mouse models. J Bone Miner Res. 2010, 25 (12): 2543-2552. 10.1002/jbmr.234.
PubMed Central
PubMed
Google Scholar
Minina E, Schneider S, Rosowski M, Lauster R, Vortkamp A: Expression of Fgf and Tgfbeta signaling related genes during embryonic endochondral ossification. Gene Expr Patterns. 2005, 6 (1): 102-109. 10.1016/j.modgep.2005.04.012.
CAS
PubMed
Google Scholar
St-Jacques B, Hammerschmidt M, McMahon AP: Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999, 13 (16): 2072-2086. 10.1101/gad.13.16.2072.
CAS
PubMed Central
PubMed
Google Scholar
Macsai CE, Foster BK, Xian CJ: Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol. 2008, 215 (3): 578-587. 10.1002/jcp.21342.
CAS
PubMed
Google Scholar
Spater D, Hill TP, O’Sullivan RJ, Gruber M, Conner DA, Hartmann C: Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development. 2006, 133 (15): 3039-3049. 10.1242/dev.02471.
PubMed
Google Scholar
Lu C, Wan Y, Cao J, Zhu X, Yu J, Zhou R, Yao Y, Zhang L, Zhao H, Li H, Zhao J, He L, Ma G, Yang X, Yao Z, Guo X: Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification. Bone. 2013, 53 (2): 566-574. 10.1016/j.bone.2012.12.016.
CAS
PubMed
Google Scholar
Hartmann C, Tabin CJ: Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001, 104 (3): 341-351. 10.1016/S0092-8674(01)00222-7.
CAS
PubMed
Google Scholar
Suzue T: Movements of mouse fetuses in early stages of neural development studied in vitro. Neurosci Lett. 1996, 218 (2): 131-134. 10.1016/S0304-3940(96)13141-4.
CAS
PubMed
Google Scholar
Marturano JE, Arena JD, Schiller ZA, Georgakoudi I, Kuo CK: Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc Natl Acad Sci USA. 2013, 110 (16): 6370-6375. 10.1073/pnas.1300135110.
CAS
PubMed Central
PubMed
Google Scholar
Sohn P, Cox M, Chen D, Serra R: Molecular profiling of the developing mouse axial skeleton: a role for Tgfbr2 in the development of the intervertebral disc. BMC Dev Biol. 2010, 10: 29-10.1186/1471-213X-10-29.
PubMed Central
PubMed
Google Scholar
Alenghat FJ, Ingber DE: Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE. 2002, 2002 (119): e6-
Google Scholar
Wang N, Butler JP, Ingber DE: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993, 260 (5111): 1124-1127. 10.1126/science.7684161.
CAS
PubMed
Google Scholar
Ingber DE: Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol. 2006, 50 (2–3): 255-266.
PubMed
Google Scholar
Idowu BD, Knight MM, Bader DL, Lee DA: Confocal analysis of cytoskeletal organisation within isolated chondrocyte sub-populations cultured in agarose. Histochem J. 2000, 32 (3): 165-174. 10.1023/A:1004095207330.
CAS
PubMed
Google Scholar
Jortikka MO, Parkkinen JJ, Inkinen RI, Karner J, Jarvelainen HT, Nelimarkka LO, Tammi MI, Lammi MJ: The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys. 2000, 374 (2): 172-180. 10.1006/abbi.1999.1543.
CAS
PubMed
Google Scholar
Blain EJ, Gilbert SJ, Hayes AJ, Duance VC: Disassembly of the vimentin cytoskeleton disrupts articular cartilage chondrocyte homeostasis. Matrix Biol. 2006, 25 (7): 398-408. 10.1016/j.matbio.2006.06.002.
CAS
PubMed
Google Scholar
Knight MM, Toyoda T, Lee DA, Bader DL: Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose. J Biomech. 2006, 39 (8): 1547-1551. 10.1016/j.jbiomech.2005.04.006.
CAS
PubMed
Google Scholar
Guilak F: Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech. 1995, 28 (12): 1529-1541. 10.1016/0021-9290(95)00100-X.
CAS
PubMed
Google Scholar
Parkkinen JJ, Lammi MJ, Inkinen R, Jortikka M, Tammi M, Virtanen I, Helminen HJ: Influence of short-term hydrostatic pressure on organization of stress fibers in cultured chondrocytes. J Orthop Res. 1995, 13 (4): 495-502. 10.1002/jor.1100130404.
CAS
PubMed
Google Scholar
Campbell JJ, Blain EJ, Chowdhury TT, Knight MM: Loading alters actin dynamics and up-regulates cofilin gene expression in chondrocytes. Biochem Biophys Res Commun. 2007, 361 (2): 329-334. 10.1016/j.bbrc.2007.06.185.
CAS
PubMed
Google Scholar
Steward AJ, Wagner DR, Kelly DJ: The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure. Eur Cell Mater. 2013, 25: 167-178.
CAS
PubMed
Google Scholar
Woods VL, Schreck PJ, Gesink DS, Pacheco HO, Amiel D, Akeson WH, Lotz M: Integrin expression by human articular chondrocytes. Arthritis Rheum. 1994, 37 (4): 537-544. 10.1002/art.1780370414.
CAS
PubMed
Google Scholar
Knudson W, Aguiar DJ, Hua Q, Knudson CB: CD44-anchored hyaluronan-rich pericellular matrices: an ultrastructural and biochemical analysis. Exp Cell Res. 1996, 228 (2): 216-228. 10.1006/excr.1996.0320.
CAS
PubMed
Google Scholar
Standal T, Borset M, Sundan A: Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004, 26 (3): 179-184.
CAS
PubMed
Google Scholar
Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, Giachelli CM: Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol. 2002, 161 (6): 2035-2046. 10.1016/S0002-9440(10)64482-3.
CAS
PubMed Central
PubMed
Google Scholar
Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, Kowalski AJ, Noda M, Denhardt DT: Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res. 1998, 13 (7): 1101-1111. 10.1359/jbmr.1998.13.7.1101.
CAS
PubMed
Google Scholar
Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, Kawahata H, Inaguma N, Kitamura Y, Nomura S: Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res. 1999, 14 (6): 839-849. 10.1359/jbmr.1999.14.6.839.
CAS
PubMed
Google Scholar
Toma CD, Ashkar S, Gray ML, Schaffer JL, Gerstenfeld LC: Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res. 1997, 12 (10): 1626-1636. 10.1359/jbmr.1997.12.10.1626.
CAS
PubMed
Google Scholar
Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT, Nifuji A, Noda M: Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice. J Bone Miner Res. 2002, 17 (4): 661-667. 10.1359/jbmr.2002.17.4.661.
PubMed
Google Scholar
Knudson W, Loeser RF: CD44 and integrin matrix receptors participate in cartilage homeostasis. Cell Mol Life Sci. 2002, 59 (1): 36-44. 10.1007/s00018-002-8403-0.
CAS
PubMed
Google Scholar
Dowthwaite GP, Edwards JC, Pitsillides AA: An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem. 1998, 46 (5): 641-651. 10.1177/002215549804600509.
CAS
PubMed
Google Scholar
Li Y, Dudley AT: Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Development. 2009, 136 (7): 1083-1092. 10.1242/dev.023820.
CAS
PubMed Central
PubMed
Google Scholar
Yang Y: Wnt signaling in development and disease. Cell Biosci. 2012, 2 (1): 14-10.1186/2045-3701-2-14.
CAS
PubMed Central
PubMed
Google Scholar
Haudenschild AK, Hsieh AH, Kapila S, Lotz JC: Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann Biomed Eng. 2009, 37 (3): 492-502. 10.1007/s10439-008-9629-2.
PubMed
Google Scholar
Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, et al: Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008, 283 (9): 5866-5875.
CAS
PubMed
Google Scholar
Dell’Accio F, De Bari C, El Tawil NM, Barone F, Mitsiadis TA, O’Dowd J, Pitzalis C: Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther. 2006, 8 (5): R139-10.1186/ar2029.
PubMed Central
PubMed
Google Scholar
Nowlan NC, Murphy P, Prendergast PJ: A dynamic pattern of mechanical stimulation promotes ossification in avian embryonic long bones. J Biomech. 2008, 41 (2): 249-258. 10.1016/j.jbiomech.2007.09.031.
PubMed
Google Scholar
Bernstein P, Sticht C, Jacobi A, Liebers C, Manthey S, Stiehler M: Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation. Osteoarthritis Cartilage. 2010, 18 (12): 1596-1607. 10.1016/j.joca.2010.09.007.
CAS
PubMed
Google Scholar
James CG, Appleton CT, Ulici V, Underhill TM, Beier F: Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy. Mol Biol Cell. 2005, 16 (11): 5316-5333. 10.1091/mbc.E05-01-0084.
CAS
PubMed Central
PubMed
Google Scholar
Tallheden T, Karlsson C, Brunner A, Van Der Lee J, Hagg R, Tommasini R, Lindahl A: Gene expression during redifferentiation of human articular chondrocytes. Osteoarthritis Cartilage. 2004, 12 (7): 525-535. 10.1016/j.joca.2004.03.004.
PubMed
Google Scholar
Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN: RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010, 26 (4): 493-500. 10.1093/bioinformatics/btp692.
PubMed Central
PubMed
Google Scholar
Wilhelm BT, Landry JR: RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods. 2009, 48 (3): 249-257. 10.1016/j.ymeth.2009.03.016.
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5 (7): 621-628. 10.1038/nmeth.1226.
CAS
PubMed
Google Scholar
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008, 18 (9): 1509-1517. 10.1101/gr.079558.108.
CAS
PubMed Central
PubMed
Google Scholar
Keller-Peck CR, Mullen RJ: Altered cell proliferation in the spinal cord of mouse neural tube mutants curly tail and Pax3 splotch-delayed. Brain Res Dev Brain Res. 1997, 102 (2): 177-188. 10.1016/S0165-3806(97)00095-3.
CAS
PubMed
Google Scholar
Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003, 19 (2): 185-193. 10.1093/bioinformatics/19.2.185.
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
CAS
PubMed
Google Scholar