Grunstein M: Histone acetylation in chromatin structure and transcription. Nature. 1997, 389 (6649): 349-352. 10.1038/38664.
Article
CAS
PubMed
Google Scholar
Peterson CL, Laniel MA: Histones and histone modifications. Curr Biol. 2004, 14 (14): R546-51. 10.1016/j.cub.2004.07.007.
Article
CAS
PubMed
Google Scholar
Gray SG, Ekstrom TJ: The Human Histone Deacetylase Family. Exp Cell Res. 2001, 262 (2): 75-83. 10.1006/excr.2000.5080.
Article
CAS
PubMed
Google Scholar
Gregoretti IV, Lee YM, Goodson HV: Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004, 338 (1): 17-31. 10.1016/j.jmb.2004.02.006.
Article
CAS
PubMed
Google Scholar
Yang XJ, Gregoire S: Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol. 2005, 25 (8): 2873-2884. 10.1128/MCB.25.8.2873-2884.2005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Blander G, Guarente L: The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004, 73: 417-435. 10.1146/annurev.biochem.73.011303.073651.
Article
CAS
PubMed
Google Scholar
Yoshida M, Matsuyama A, Komatsu Y, Nishino N: From discovery to the coming generation of histone deacetylase inhibitors. Curr Med Chem. 2003, 10 (22): 2351-2358. 10.2174/0929867033456602.
Article
CAS
PubMed
Google Scholar
Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS: Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004, 64 (3): 1079-1086. 10.1158/0008-5472.CAN-03-0799.
Article
CAS
PubMed
Google Scholar
Hu E, Dul E, Sung CM, Chen Z, Kirkpatrick R, Zhang GF, Johanson K, Liu R, Lago A, Hofmann G, Macarron R, de los Frailes M, Perez P, Krawiec J, Winkler J, Jaye M: Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther. 2003, 307 (2): 720-728. 10.1124/jpet.103.055541.
Article
CAS
PubMed
Google Scholar
Minucci S, Pelicci PG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006, 6 (1): 38-51. 10.1038/nrc1779.
Article
CAS
PubMed
Google Scholar
Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP: Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999, 401 (6749): 188-193. 10.1038/43710.
Article
CAS
PubMed
Google Scholar
Acharya MR, Sparreboom A, Venitz J, Figg WD: Rational Development of Histone Deacetylase Inhibitors as Anti-cancer Agents: A Review. Mol Pharmacol. 2005
Google Scholar
Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001, 276 (39): 36734-36741. 10.1074/jbc.M101287200.
Article
CAS
PubMed
Google Scholar
Blanchard F, Chipoy C: Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases?. Drug Discov Today. 2005, 10 (3): 197-204. 10.1016/S1359-6446(04)03309-4.
Article
CAS
PubMed
Google Scholar
McKinsey TA, Olson EN: Cardiac histone acetylation--therapeutic opportunities abound. Trends Genet. 2004, 20 (4): 206-213. 10.1016/j.tig.2004.02.002.
Article
CAS
PubMed
Google Scholar
Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG: Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell. 2000, 11 (6): 2069-2083.
Article
CAS
PubMed Central
PubMed
Google Scholar
Burgess A, Ruefli A, Beamish H, Warrener R, Saunders N, Johnstone R, Gabrielli B: Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene. 2004, 23 (40): 6693-6701. 10.1038/sj.onc.1207893.
Article
CAS
PubMed
Google Scholar
Schroeder TM, Westendorf JJ: Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res. 2005, 20 (12): 2254-2263. 10.1359/JBMR.050813.
Article
CAS
PubMed
Google Scholar
Iwami K, Moriyama T: Effects of short chain fatty acid, sodium butyrate, on osteoblastic cells and osteoclastic cells. Int J Biochem. 1993, 25 (11): 1631-1635. 10.1016/0020-711X(93)90522-G.
Article
CAS
PubMed
Google Scholar
Sakata R, Minami S, Sowa Y, Yoshida M, Tamaki T: Trichostatin A activates the osteopontin gene promoter through AP1 site. Biochem Biophys Res Commun. 2004, 315 (4): 959-963. 10.1016/j.bbrc.2004.01.152.
Article
CAS
PubMed
Google Scholar
Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, Oh BC, Lee KS, Lee YH, Bae SC: Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006, 281 (24): 16502-16511. 10.1074/jbc.M512494200.
Article
CAS
PubMed
Google Scholar
Lee HW, Suh JH, Kim AY, Lee YS, Park SY, Kim JB: Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol. 2006, 20 (10): 2432-2443. 10.1210/me.2006-0061.
Article
CAS
PubMed
Google Scholar
Smith E, Frenkel B: Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-dependent and -independent manner. J Biol Chem. 2005, 280 (3): 2388-2394. 10.1074/jbc.M406294200.
Article
CAS
PubMed
Google Scholar
Cho HH, Park HT, Kim YJ, Bae YC, Suh KT, Jung JS: Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem. 2005
Google Scholar
Boer JD, Licht R, Bongers M, Klundert TV, Arends R, Blitterswijk CV: Inhibition of Histone Acetylation as a Tool in Bone Tissue Engineering. Tissue Eng. 2006
Google Scholar
Schroeder TM, Kahler RA, Li X, Westendorf JJ: Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem. 2004, 279 (40): 41998-42007. 10.1074/jbc.M403702200.
Article
CAS
PubMed
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30 (1): 207-210. 10.1093/nar/30.1.207.
Article
CAS
PubMed Central
PubMed
Google Scholar
Qin L, Tamasi J, Raggatt L, Li X, Feyen JH, Lee DC, Dicicco-Bloom E, Partridge NC: Amphiregulin is a novel growth factor involved in normal bone development and in the cellular response to parathyroid hormone stimulation. J Biol Chem. 2005, 280 (5): 3974-3981. 10.1074/jbc.M409807200.
Article
CAS
PubMed
Google Scholar
Roman-Roman S, Shi DL, Stiot V, Hay E, Vayssiere B, Garcia T, Baron R, Rawadi G: Murine Frizzled-1 behaves as an antagonist of the canonical Wnt/beta-catenin signaling. J Biol Chem. 2004, 279 (7): 5725-5733. 10.1074/jbc.M309233200.
Article
CAS
PubMed
Google Scholar
Bretscher A, Chambers D, Nguyen R, Reczek D: ERM-Merlin and EBP50 protein families in plasma membrane organization and function. Annu Rev Cell Dev Biol. 2000, 16: 113-143. 10.1146/annurev.cellbio.16.1.113.
Article
CAS
PubMed
Google Scholar
Weinman EJ, Hall RA, Friedman PA, Liu-Chen LY, Shenolikar S: The Association Of Nherf Adaptor Proteins With G Protein-Coupled Receptors And Receptor Tyrosine Kinases. Annu Rev Physiol. 2006, 68: 491-505. 10.1146/annurev.physiol.68.040104.131050.
Article
CAS
PubMed
Google Scholar
Sneddon WB, Syme CA, Bisello A, Magyar CE, Rochdi MD, Parent JL, Weinman EJ, Abou-Samra AB, Friedman PA: Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). J Biol Chem. 2003, 278 (44): 43787-43796. 10.1074/jbc.M306019200.
Article
CAS
PubMed
Google Scholar
Shibata T, Chuma M, Kokubu A, Sakamoto M, Hirohashi S: EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma. Hepatology. 2003, 38 (1): 178-186. 10.1053/jhep.2003.50270.
Article
CAS
PubMed
Google Scholar
Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ: Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci U S A. 2002, 99 (17): 11470-11475. 10.1073/pnas.162232699.
Article
CAS
PubMed Central
PubMed
Google Scholar
Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002, 82 (2): 373-428.
Article
CAS
PubMed
Google Scholar
Garrett IR, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G, Harris SE, Gallwitz W, Kim KB, Hu S, Crews CM, Mundy GR: Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest. 2003, 111 (11): 1771-1782. 10.1172/JCI200316198.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhao M, Qiao M, Harris SE, Oyajobi BO, Mundy GR, Chen D: Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo. J Biol Chem. 2004, 279 (13): 12854-12859. 10.1074/jbc.M313294200.
Article
CAS
PubMed Central
PubMed
Google Scholar
Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J: Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell. 2004, 116 (6): 883-895. 10.1016/S0092-8674(04)00216-8.
Article
CAS
PubMed
Google Scholar
Westendorf JJ, Kahler RA, Schroeder TM: Wnt signaling in osteoblasts and bone diseases. Gene. 2004, 341: 19-39. 10.1016/j.gene.2004.06.044.
Article
CAS
PubMed
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003, 4 (2): 249-264. 10.1093/biostatistics/4.2.249.
Article
PubMed
Google Scholar