Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0035671.
Article
CAS
Google Scholar
Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol. 2015;31:100–8.
Article
CAS
Google Scholar
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2009;38:457–62.
Article
Google Scholar
Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet. 2007;39:839–47.
CAS
Google Scholar
Kumar S, Gokulasuriyan RK, Ghosh M. Comparative in-silico genome analysis of Leishmania (Leishmania) donovani: a step towards its species specificity. Meta Gene. 2014;2:782–98.
Article
Google Scholar
Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21:2143–56.
Article
CAS
Google Scholar
Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, Sundar S, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. elife. 2016. https://doi.org/10.7554/eLife.12613.
Karunaweera ND, Pratlong F, Siriwardane HVYD, Ihalamulla RL, Dedet JP. Sri Lankan cutaneous leishmaniasis is caused by Leishmania donovani zymodeme MON-37. Trans R Soc Trop Med Hyg. 2003. https://doi.org/10.1016/s0035-9203(03)90061-7.
Article
CAS
Google Scholar
Rajapaksa US, Ihalamulla RL, Karunaweera ND. First report of mucosal tissue localisation of leishmaniasis in Sri Lanka. Ceylon Med J. 2005;50:90–1.
CAS
PubMed
Google Scholar
Karunaweera ND. Leishmania donovani causing cutaneous leishmaniasis in Sri Lanka: a wolf in sheep’s clothing? Trends Parasitol. 2009;25:458–63.
Article
Google Scholar
Refai FW, Madarasingha NP, Fernandopulle R, Karunaweera N. Nonresponsiveness to standard treatment in cutaneous leishmaniasis: a case series from Sri Lanka. Trop Parasitol. 2016;6:155–8.
Article
Google Scholar
Siriwardana HVYD, Noyes HA, Beeching NJ, Chance ML, Karunaweera ND, Bates PA. Leishmania donovani and Cutaneous Leishmaniasis, Sri Lanka. Emerg Infect Dis. 2007;13:1–3.
Article
Google Scholar
Kariyawasam UL, Selvapandiyan A, Rai K, Wani TH, Pahuja K, Premathilake HU, et al. Genetic diversity of Leishmania donovani that causes cutaneous leishmaniasis in Sri Lanka: a cross sectional study with regional comparisons. BMC Infect Dis. 2017. https://doi.org/10.1186/s12879-017-2883-x.
Zhang WW, Ramasamy G, Mccall L, Haydock A. Genetic analysis of Leishmania donovani tropism using a naturally attenuated cutaneous strain. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004244.
Article
Google Scholar
Myler PJ, Fasel N, editors. The metabolic repertoire of Leishmania and implications for drug discovery. Leishmania: After the Genome. Caister Academic Press; 2008. p. 133–4.
Google Scholar
Ariza A, Vickers TJ, Greig N, Armour KA, Dixon MJ, Eggleston IM, et al. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme. Mol Microbiol. 2006;59:1239–48.
Article
CAS
Google Scholar
Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT. Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect. 2012;14:1377–89.
Article
CAS
Google Scholar
Seay MB, Heard PL, Chaudhuri G. Surface Zn-proteinase as a molecule for defense of Leishmania mexicana amazonensis promastigotes against cytolysis inside macrophage phagolysosomes. Infect Immun. 1996;64:5129–37.
CAS
PubMed
PubMed Central
Google Scholar
Nunes VS, Damasceno JD, Freire R, Tosi LRO. Molecular & biochemical parasitology the Hus1 homologue of Leishmania major encodes a nuclear protein that participates in DNA damage response. Mol Biochem Parasitol. 2011;177:65–9.
Article
CAS
Google Scholar
Vickers TJ, Beverley SM. Folate metabolic pathways in Leishmania. Essays Biochem. 2011;51:63–80.
Article
CAS
Google Scholar
Nare B, Hardy LW, Beverley SM, Ptrs L. The roles of Pteridine reductase 1 and Dihydrofolate reductase-thymidylate synthase in Pteridine metabolism in the protozoan parasite Leishmania major *. J Biol Chem. 1997;272:13883–91.
Article
CAS
Google Scholar
Cunningham ML, Beverley SM. Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Mol Biochem Parasitol. 2001;113:199–213.
Article
CAS
Google Scholar
Baharia RK, Tandon R, Sahasrabuddhe AA, Sundar S, Dube A. Nucleosomal histone proteins of L. donovani: a combination of recombinant H2A, H2B, H3 and H4 proteins were highly immunogenic and offered optimum prophylactic efficacy against Leishmania challenge in hamsters. PLoS One. 2014;9(6):e97911.
Article
Google Scholar
Gowri V, Ghosh I, Sharma A, Madhubala R. Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major. BMC Genomics. 2012. https://doi.org/10.1186/1471-2164-13-621.
Article
CAS
Google Scholar
Hashimoto M, Murata E, Aoki T. Secretory protein with RING finger domain (SPRING) specific to Trypanosoma cruzi is directed, as a ubiquitin ligase related protein, to the nucleus of host cells. Cell Microbiol. 2009;12:19–30.
Article
Google Scholar
Zhang WW, Matlashewski G. Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol. 2001;39:935–48.
Article
CAS
Google Scholar
Jackson AP. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol Biol Evol. 2010;27:33–45.
Article
CAS
Google Scholar
Tovar J, Wilkinson S, Mottram JC, Fairlamb AH. Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol Microbiol. 1998;29:653–60.
Article
CAS
Google Scholar
Junghae M, Raynes JG. Activation of p38 mitogen-activated protein kinase attenuates Leishmania donovani infection in macrophages activation of p38 mitogen-activated protein kinase attenuates Leishmania donovani infection in macrophages. Infect Immun. 2002;70:5026–35.
Article
CAS
Google Scholar
Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, Pescher P. Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio. 2017. https://doi.org/10.1128/mBio.00599-17.
Fuente SG, Peiró-p R, Rastrojo A, Moreno J, Carrasco-ramiro F, Requena JM, et al. Resequencing of the Leishmania infantum ( strain JPCM5 ) genome and de novo assembly into 36 contigs. Sci Rep. 2017;7:1–10.
Article
Google Scholar
Cotrim PC, Garrity LK, Beverley SM. Isolation of genes mediating resistance to inhibitors of nucleoside and Ergosterol metabolism in Leishmania by overexpression/selection. J Biol Chem. 1999;274:37723–30.
Article
CAS
Google Scholar
El Fadili K, Drummelsmith J, Roy G, Jardim A, Ouellette M. Down regulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Exp. Parasitol. 2009;123:51–7.
Article
Google Scholar
Sardar AH, Jardim A, Ghosh AK, Mandal A, Das S, Saini S, et al. Genetic manipulation of Leishmania donovani to explore the involvement of Argininosuccinate synthase in oxidative stress management. PLoS Negl Trop Dis. 2016;10:e0004308.
Article
Google Scholar
Lakhal-Naouar I, Jardim A, Strasser R, Luo S, Kozakai Y, Nakhasi HL, et al. Leishmania donovani Argininosuccinate synthase is an active enzyme associated with parasite pathogenesis. PLoS Negl Trop Dis. 2012;6:e1849.
Article
CAS
Google Scholar
Iyer JP, Kaprakkaden A, Choudhary ML, Shaha C. Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence. Mol Microbiol. 2008;68:372–91.
Article
CAS
Google Scholar
JA S, SA N, VJ C, JC E, Leptak C, Bouvier J. Leishmania major: comparison of the Cathepsin L- and B-like cysteine protease genes with those of other Trypanosomatids. Exp Parasitol. 1997;85:63–76.
Article
Google Scholar
Somanna A, Mundodi V, Gedamu L. Functional analysis of Cathepsin B-like cysteine proteases from Leishmania donovani complex. J Biol Chem. 2002;277:25305–12.
Article
CAS
Google Scholar
Lye LF, Cunningham ML, Beverley SM. Characterization of quinonoid-dihydropteridine reductase (QDPR) from the lower eukaryote Leishmania major. J Biol Chem. 2002;277:38245–53.
Article
CAS
Google Scholar
Wu Y, El Fakhry Y, Sereno D, Tamar S, Papadopoulou B. A new developmentally regulated gene family in Leishmania amastigotes encoding a homolog of amastin surface proteins. Mol Biochem Parasitol. 2000;110:345–57.
Article
CAS
Google Scholar
Adung’a VO, Gadelha C, Field MC. Proteomic analysis of Clathrin interactions in trypanosomes reveals dynamic evolution of endocytosis. Traffic. 2013;14:440–57.
Article
Google Scholar
Ashutosh GM, Sundar S, Duncan R, Nakhasi HL, Goyal N. Downregulation of mitogen-activated protein kinase 1 of Leishmania donovani field isolates is associated with antimony resistance. Antimicrob Agents Chemother. 2012;56:518–25.
Article
CAS
Google Scholar
Rogers MB, Hilley JD, Dickens NJ, Wilkes J, P a B, Depledge DP, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21:2129–42.
Article
CAS
Google Scholar
Valdivia HO, Reis-cunha JL, Rodrigues-luiz GF, Baptista RP, Baldeviano GC, Gerbasi RV, et al. Comparative genomic analysis of Leishmania ( Viannia ) peruviana and Leishmania ( Viannia ) braziliensis. BMC Genomics. 2015. https://doi.org/10.1186/s12864-015-1928-z.
Sterkers Y, Lachaud L, Bourgeois N, Crobu L, Bastien P, Pagès M. Novel insights into genome plasticity in eukaryotes : mosaic aneuploidy in Leishmania. Mol Microbiol. 2012;86:15–23.
Article
CAS
Google Scholar
Depledge DP, Evans KJ, Ivens AC, Aziz N, Maroof A, Kaye PM, et al. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis. 2009;3:7.
Article
Google Scholar
Leprohon P, Légaré D, Raymond F, Madore É, Hardiman G, Corbeil J, et al. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 2009;37:1387–99.
Article
CAS
Google Scholar
Mukherjee A, Langston LD, Ouellette M. Intrachromosomal tandem duplication and repeat expansion during attempts to inactivate the subtelomeric essential gene GSH1 in Leishmania. Nucleic Acids Res. 2011;39:7499–511.
Article
CAS
Google Scholar
Mukherjee A, Boisvert S, Monte-neto RL, Coelho AC, Raymond F, Mukhopadhyay R, et al. Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Mol Microbiol. 2013;88:189–202.
Article
CAS
Google Scholar
Westrop GD, Williams RAM, Wang L, Zhang T, Watson DG, Silva AM, et al. Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One. 2015;10:9.
Article
Google Scholar
Fernandes AP, Canavaci AMC, McCall L-I, Matlashewski G. A2 and other Visceralizing proteins of Leishmania: role in pathogenesis and application for vaccine development. Subcell Biochem. 2014;74:77–101.
Article
CAS
Google Scholar
Zhang WW, Mendez S, Ghosh A, Myler P, Ivens A, Clos J, et al. Comparison of the A2 gene locus in Leishmania donovani and Leishmania major and its control over cutaneous infection. J Biol Chem. 2003;278:35508–15.
Article
CAS
Google Scholar
Rai K, Bhattarai NR, Vanaerschot M, Imamura H, Gebru G, Khanal B, et al. Single locus genotyping to track Leishmania donovani in the Indian subcontinent: application in Nepal. PLoS Negl Trop Dis. 2017;11:1–13.
Article
Google Scholar
Haimeur A, Guimond C, Pilote S, Mukhopadhyay R, Rosen BP, Poulin R, et al. Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Mol Microbiol. 1999;34:726–35.
Article
CAS
Google Scholar
Guimond C, Trudel N, Brochu C, Marquis N, El Fadili A, Peytavi R, et al. Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Res. 2003;31:5886–96.
Article
CAS
Google Scholar
Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005;57:1690–9.
Article
CAS
Google Scholar
El Fadili K, Messier N, Leprohon P, Roy G, Guimond C, Trudel N, et al. Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother. 2005;49:1988–93.
Article
Google Scholar
Refai WF, Madarasingha NP, Sumanasena B, Weerasingha S, De Silva A, Fernandopulle R, et al. Efficacy, safety and cost-effectiveness of thermotherapy in the treatment of Leishmania donovani–induced cutaneous Leishmaniasis: a randomized controlled clinical trial. Am J Trop Med Hyg. 2017;97:1120–6.
Article
CAS
Google Scholar
Logan-Klumpler FJ, De Silva N, Boehme U, Rogers MB, Velarde G, McQuillan JA, et al. GeneDB—an annotation database for pathogens. Nucleic Acids Res. 2012;40:D98–D108.
Article
CAS
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 1 Sept 2016.
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013;ArXiv:1303.3997 [q-bio.GN].
Broad Institute. Picard. http://broadinstitute.github.io/picard. Accessed 1 Sept 2016.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
Google Scholar
Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947;18:50–60.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
Google Scholar
Chen F, Mackey AJ, Christian J, Stoeckert J, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006;34:D363–8.
Article
CAS
Google Scholar
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P. Artemis : sequence visualization and annotation. Bioinforma Appl Note. 2000;16:944–5.
Article
CAS
Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.
Article
CAS
Google Scholar
Frith MC. A new repeat-masking method enables specific detection of homologous sequences. Nucleic Acids Res. 2011. https://doi.org/10.1093/nar/gkq1212.
Article
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6:80–92.
Article
CAS
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Oxford Acad Bioinforma. 2011;27:2156–8.
Article
CAS
Google Scholar
Team RCR. A language and environment for statistical computing. In: R Foundation for statistical computing; 2014. http://www.R-project.org. Accessed 1 Oct 2017.
Google Scholar
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. Gplots: various R programming tools for plotting data. 2016. https://cran.r-project.org/package=gplots. Accessed 1 Oct 2017.
Google Scholar
Zheng X, Levine D, Shen J, Gogarten S, Laurie C, Weir B. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.
Article
CAS
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
Google Scholar
Rambaut A. FigTree: molecular evolution, Phylogenetics and epidemiology http://tree.bio.ed.ac.uk/software/figtree/. Accessed 1 Apr 2018.
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Article
CAS
Google Scholar