Robert-Gangneux F, Darde ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25(2):264–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubey JP. The history and life-cycle of Toxoplasma gondii. In: Weiss LM, Kim K, editors. Toxoplasma gondii the model apicomplexan: perspective and methods. 2nd ed. San Diego: Academic Press; 2013. p. 1–17.
Google Scholar
Weiss LM, Kim K. The development and biology of bradyzoites of toxoplasma gondii. Front Biosci. 2000;5(1):D391–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLeod RM, van Tubbergen C, Montoya JG, Petersen E. Human toxoplasma infection. In: Weiss LM, Kim K, editors. Toxoplasma gondii the model Apicomplexan: perspectives and methods. 2nd ed. San Diego: Academic Press; 2013. p. 100–59.
Google Scholar
Pfaff AW, Liesenfeld O, Candolfi E. Congenital toxoplasmosis. In: Ajioka JW, Soldati D, editors. Toxoplasma molecular and cellular biology. Norfolk: Horizon Bioscience; 2007. p. 93–110.
Google Scholar
Dupont CD, Christian DA, Hunter CA. Immune response and immunopathology during toxoplasmosis. Semin Immunopathol. 2012;34(6):793–813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasai M, Pradipta A, Yamamoto M. Host immune responses to toxoplasma gondii. Int Immunol. 2018;30(3):113–9.
Article
CAS
PubMed
Google Scholar
Scharton-Kersten TM, Wynn TA, Denkers EY, Bala S, Grunvald E, Hieny S, et al. In the absence of endogenous IFN-gamma, mice develop unimpaired IL-12 responses to toxoplasma gondii while failing to control acute infection. J Immunol. 1996;157(9):4045–54.
CAS
PubMed
Google Scholar
Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kuhn R, et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent upon CD4+ T cells and accompanied by overproduction of IL-12, IFN-g, and TNF-a. J Immunol. 1996;157(2):798–805.
CAS
PubMed
Google Scholar
Suzuki Y, Sher A, Yap G, Park D, Ellis Neyer L, Liesenfeld O, et al. IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J Immunol. 2000;164:5375–82.
Article
CAS
PubMed
Google Scholar
Cohen SB, Maurer KJ, Egan CE, Oghumu S, Satoskar AR, Denkers EY. CXCR3-dependent CD4(+) T cells are required to activate inflammatory monocytes for defense against intestinal infection. PLoS Pathog. 2013;9(10):e1003706.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dunay IR, Damatta RA, Fux B, Presti R, Greco S, Colonna M, et al. Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen toxoplasma gondii. Immunity. 2008;29(2):306–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunay IR, Sibley LD. Monocytes mediate mucosal immunity to toxoplasma gondii. Curr Opin Immunol. 2010;22(4):461–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bierly AL, Shufesky WJ, Sukhumavasi W, Morelli A, Denkers EY. Dendritic cells expressing plasmacytoid marker PDCA-1 are Trojan horses during toxoplasma gondii infection. J Immunol. 2008;181(12):8445–91.
Article
Google Scholar
Caamano J, Alexander J, Craig L, Bravo R, Hunter CA. The NF-kB family member RelB is required for innate and adaptive immunity to Toxoplasma gondii. J Immunol. 1999;163(8):4453–61.
CAS
PubMed
Google Scholar
Cohen SB, Denkers EY. Impact of toxoplasma gondii on dendritic cell subset function in the intestinal mucosa. J Immunol. 2015;195(6):2754–62.
Article
CAS
PubMed
Google Scholar
Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, Tardieux I. CD11c and CD11b expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood. 2006;107(1):309–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sangare LO, Olafsson EB, Wang Y, Yang N, Julien L, Camejo A, et al. In vivo CRISPR screen identifies TgWIP as a toxoplasma modulator of dendritic cell migration. Cell Host Microbe. 2019;26(4):478–92 e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Egan CE, Sukhumavasi W, Butcher BA, Denkers EY. Functional aspects of toll-like receptor/MyD88 signalling during protozoan infection: focus on toxoplasma gondii. Clin Exp Immunol. 2009.
Pifer R, Yarovinsky F. Innate responses to toxoplasma gondii in mice and humans. Trends Parasitol. 2011;27:388–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrade WA, Souza MD, Ramos-Martinez E, Nagpal K, Dutra MS, Melo MB, et al. Combined action of nucleic acid-sensing toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to toxoplasma gondii in mice. Cell Host Microbe. 2013;13(1):42–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raetz M, Kibardin A, Sturge CR, Pifer R, Li H, Burstein E, et al. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to toxoplasma gondii profilin. J Immunol. 2013;191(9):4818–27.
Article
CAS
PubMed
Google Scholar
Yarovinsky F, Zhang D, Anderson JF, Bannenberg GL, Serhan CN, Hayden MS, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science. 2005;308(5728):1626–9.
Article
CAS
PubMed
Google Scholar
Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an IL-12 response. Cell Host Microbe. 2008;3:1477–87.
Gazzinelli RT, Mendonca-Neto R, Lilue J, Howard J, Sher A. Innate resistance against toxoplasma gondii: an evolutionary tale of mice, cats, and men. Cell Host Microbe. 2014;15(2):132–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008;321(5889):691–6.
Article
CAS
Google Scholar
von Bernuth H, Picard C, Puel A, Casanova JL. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans. Eur J Immunol. 2012;42(12):3126–35.
Article
CAS
Google Scholar
Agliano F, Rathinam VA, Medvedev AE, Vanaja SK, Vella AT. Long noncoding RNAs in host-pathogen interactions. Trends Immunol. 2019;40(6):492–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menard KL, Haskins BE, Denkers EY. Impact of toxoplasma gondii infection on host non-coding RNA responses. Front Cell Infect Microbiol. 2019;9(1):132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atianand MK, Caffrey DR, Fitzgerald KA. Immunobiology of long noncoding RNAs. Annu Rev Immunol. 2017;35(1):177–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen YG, Satpathy AT, Chang HY. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol. 2017;18(9):962–72.
Article
CAS
PubMed
Google Scholar
Araujo FG, Slifer T. Different strains of Toxoplasma gondii induce different cytokine responses in CBA/Ca mice. Infect Immun. 2003;71:4171–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gavrilescu LC, Denkers EY. IFN-gamma overproduction and high level apoptosis are associated with high but not low virulence toxoplasma gondii infection. J Immunol. 2001;167(2):902–9.
Article
CAS
PubMed
Google Scholar
Mordue DG, Monroy F, La Regina M, Dinarello CA, Sibley LD. Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol. 2001;167(8):4574–84.
Article
CAS
PubMed
Google Scholar
Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, Yarovinsky F, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog. 2011;7(9):e1002236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen KD, Wang Y, Wojno ED, Shastri AJ, Hu K, Cornel L, et al. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe. 2011;9(6):472–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robben PM, Mordue DG, Truscott SM, Takeda K, Akira S, Sibley LD. Production of IL-12 by macrophages infected with toxoplasma gondii depends on the parasite genotype. J Immunol. 2004;172(6):3686–94.
Article
CAS
PubMed
Google Scholar
Patil V, Zhao Y, Shah S, Fox BA, Rommereim LM, Bzik DJ, et al. Co-existence of classical and alternative activation programs in macrophages responding to toxoplasma gondii. Int J Parasitol. 2014;44(2):161–4.
Article
CAS
PubMed
Google Scholar
Melo EJ, Carvalho TM, De Souza W. Behaviour of microtubules in cells infected with toxoplasma gondii. Biocell. 2001;25(1):53–9.
CAS
PubMed
Google Scholar
Walker ME, Hjort EE, Smith SS, Tripathi A, Hornick JE, Hinchcliffe EH, et al. Toxoplasma gondii actively remodels the microtubule network in host cells. Microbes Infect. 2008;10(14–15):1440–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosoi Y, Soma M, Shiura H, Sado T, Hasuwa H, Abe K, et al. Female mice lacking Ftx lncRNA exhibit impaired X-chromosome inactivation and a microphthalmia-like phenotype. Nat Commun. 2018;9(1):3829.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y, Zhang J, Chen X, Xu X, Cao G, Li H, et al. LncRNA FTX sponges miR-215 and inhibits phosphorylation of vimentin for promoting colorectal cancer progression. Gene Ther. 2018;25(5):321–30.
Article
CAS
PubMed
Google Scholar
Li Y, Guo D, Zhao Y, Ren M, Lu G, Wang Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3beta signal pathway. Cell Death Dis. 2018;9(9):888.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tong J, Ma X, Yu H, Yang J. SNHG15: a promising cancer-related long noncoding RNA. Cancer Manag Res. 2019;11(1):5961–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zanovello P, Vallerani E, Biasi G, Landolfo S, Colavo D. Monoclonal antibody against IFN-g inhibits Maloney murine sarcoma virus-specific cytotoxic T cell differentiation. J Immunol. 1988;140(4):1341–4.
CAS
PubMed
Google Scholar
Zhang Y, Zhang D, Lv J, Wang S, Zhang Q. LncRNA SNHG15 acts as an oncogene in prostate cancer by regulating miR-338-3p/FKBP1A axis. Gene. 2019;705(1):44–50.
CAS
PubMed
Google Scholar
Cai Y, Chen H, Jin L, You Y, Shen J. STAT3-dependent transactivation of miRNA genes following toxoplasma gondii infection in macrophage. Parasit Vectors. 2013;6(1):356.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rezaei F, Daryani A, Sharifi M, Sarvi S, Jafari N, Pagheh AS, et al. miR-20a inhibition using locked nucleic acid (LNA) technology and its effects on apoptosis of human macrophages infected by toxoplasma gondii RH strain. Microb Pathog. 2018;121(1):269–76.
Article
CAS
PubMed
Google Scholar
Hargrave KE, Woods S, Millington O, Chalmers S, Westrop GD, Roberts CW. Multi-Omics studies demonstrate toxoplasma gondii-induced metabolic reprogramming of murine dendritic cells. Front Cell Infect Microbiol. 2019;9(1):309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan CW, Lee YB, Uney J, Flynn A, Tobias JH, Norman M. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis. Biochem J. 2007;407(3):355–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carruthers V, Boothroyd JC. Pulling together: an integrated model of toxoplasma cell invasion. Curr Opin Microbiol. 2006;10(1):83–9.
Article
PubMed
CAS
Google Scholar
Del Rosario M, Periz J, Pavlou G, Lyth O, Latorre-Barragan F, Das S, et al. Apicomplexan F-actin is required for efficient nuclear entry during host cell invasion. EMBO Rep. 2019;20(12):e48896.
PubMed
PubMed Central
Google Scholar
He JJ, Ma J, Wang JL, Zhang FK, Li JX, Zhai BT, et al. Global Transcriptome profiling of multiple porcine organs reveals toxoplasma gondii-induced transcriptional landscapes. Front Immunol. 2019;10(1):1531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Melo MB, Nguyen QP, Cordeiro C, Hassan MA, Yang N, McKell R, et al. Transcriptional analysis of murine macrophages infected with different toxoplasma strains identifies novel regulation of host signaling pathways. PLoS Pathog. 2013;9(12):e1003779.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olson WJ, Martorelli Di Genova B, Gallego-Lopez G, Dawson AR, Stevenson D, Amador-Noguez D, et al. Dual metabolomic profiling uncovers toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability. PLoS Pathog. 2020;16(4):e1008432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pittman KJ, Aliota MT, Knoll LJ. Dual transcriptional profiling of mice and toxoplasma gondii during acute and chronic infection. BMC Genomics. 2014;15(1):806.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tanaka S, Nishimura M, Ihara F, Yamagishi J, Suzuki Y, Nishikawa Y. Transcriptome analysis of mouse brain infected with toxoplasma gondii. Infect Immun. 2013;81(10):3609–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou CX, Elsheikha HM, Zhou DH, Liu Q, Zhu XQ, Suo X. Dual identification and analysis of differentially expressed transcripts of porcine PK-15 cells and toxoplasma gondii during in vitro infection. Front Microbiol. 2016;7(1):721.
PubMed
PubMed Central
Google Scholar
Zhou CX, Zhou DH, Liu GX, Suo X, Zhu XQ. Transcriptomic analysis of porcine PBMCs infected with toxoplasma gondii RH strain. Acta Trop. 2016;154:82–8.
Article
CAS
PubMed
Google Scholar
Gavrilescu LC, Denkers EY. IFN-g overproduction and high level apoptosis are associated with high but not low virulence Toxoplasma gondii infection. J Immunol. 2001;167:902–9.
Article
CAS
PubMed
Google Scholar
Mordue DG, Monroy F, La Regina M, Dinarello CA, Sibley LD. Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol. 2001;167:4574–84.
Article
CAS
PubMed
Google Scholar
Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature. 2007;445(7125):324–7.
Article
CAS
PubMed
Google Scholar
Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KD, et al. Strain-specific activation of the NF-kappaB pathway by GRA15, a novel toxoplasma gondii dense granule protein. J Exp Med. 2011;208(1):195–212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuks JM, Arrighi RB, Weidner JM, Kumar Mendu S, Jin Z, Wallin RP, et al. GABAergic signaling is linked to a Hypermigratory phenotype in dendritic cells infected by toxoplasma gondii. PLoS Pathog. 2012;8(12):e1003051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Huang L, Wei Q, Zhang Y, Zhang S, Zhang W, et al. Microarray analysis of long non-coding RNA expression profiles uncovers a toxoplasma-induced negative regulation of host immune signaling. Parasit Vectors. 2018;11(1):174.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rochet E, Appukuttan B, Ma Y, Ashander LM, Smith JR. Expression of long non-coding RNAs by human retinal Muller glial cells infected with clonal and exotic virulent toxoplasma gondii. Non-coding RNA. 2019;5(4):48.
Article
CAS
PubMed Central
Google Scholar
Menard KL, Haskins BE, Colombo AP, Denkers EY. Toxoplasma gondii manipulates expression of host long noncoding RNA during intracellular infection. Sci Rep. 2018;8(1):15017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fitzgerald KA, Caffrey DR. Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol. 2014;26(1):140–6.
Article
CAS
PubMed
Google Scholar
Scanga CA, Aliberti J, Jankovic D, Tilloy F, Bennouna S, Denkers EY, et al. Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J Immunol. 2002;168:5997–6001.
Article
CAS
PubMed
Google Scholar
Croken MM, Ma Y, Markillie LM, Taylor RC, Orr G, Weiss LM, et al. Distinct strains of toxoplasma gondii feature divergent transcriptomes regardless of developmental stage. PLoS One. 2014;9(11):e111297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim L, Butcher BA, Denkers EY. Toxoplasma gondii interferes with lipopolysaccharide-induced mitogen-activated protein kinase activation by mechanisms distinct from endotoxin tolerance. J Immunol. 2004;172(5):3003–10.
Article
CAS
PubMed
Google Scholar
Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47(D1):D766–D73.
Article
CAS
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29(8):1035–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tange O. GNU parallel: the command-line power. USENIX Mag. 2011;36(1):42–7.
Google Scholar
Team RC. R: a language and environment for statistical computing; 2014.
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.
Article
PubMed
PubMed Central
Google Scholar
Wickham H. ggplot: Elegant Graphics for Data Analysis Springer; 2016.
Book
Google Scholar
Wickham H. reshape2: Flexibly reshape data: a reboot of the reshape package. R Packag. Version. ed; 2012.
Google Scholar
Kolde R. Pheatmap: pretty heatmaps. R Packag. Version 61, 915 ed; 2012.
Google Scholar
Varet H, Brillet-Gueguen L, Coppee JY, Dillies MA. SARTools: a DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS One. 2016;11(6):e0157022.
Article
PubMed
PubMed Central
CAS
Google Scholar
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–W8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gajria B, Bahl A, Brestelli J, Dommer J, Fischer S, Gao X, et al. ToxoDB: an integrated toxoplasma gondii database resource. Nucleic Acids Res. 2008;36(Database issue):D553–6.
CAS
PubMed
Google Scholar