Beale CV, Long SP. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus ×giganteus and Spartina cynosuroides. Biomass Bioenergy. 1997;12(6):419–28. https://doi.org/10.1016/S0961-9534(97)00016-0.
Article
Google Scholar
Boehmel C, Lewandowski I, Claupein W. Comparing annual and perennial energy cropping systems with different management intensities. Agric Syst. 2008;96(1–3):224–36. https://doi.org/10.1016/j.agsy.2007.08.004.
Article
Google Scholar
Maren NA, Touchell DH, Ranney TG, Ashrafi H, Whitfield MB, Chinn M. Biomass yields, cytogenetics, fertility, and compositional analyses of novel bioenergy grass hybrids (Tripidium spp.). Glob Change Biol Bioenerg. 2020;12(5):361–73. https://doi.org/10.1111/gcbb.12676.
Article
CAS
Google Scholar
Propheter JL, Staggenborg S. Performance of annual and perennial biofuel crops: nutrient removal during the first two years. Agron J. 2010;102(2):798–805. https://doi.org/10.2134/agronj2009.0462.
Article
CAS
Google Scholar
Palmer IE, Gehl RJ, Ranney TG, Touchell D, George N. Biomass yield, nitrogen response, and nutrient uptake of perennial bioenergy grasses in North Carolina. Biomass Bioenergy. 2014;63:218–28. https://doi.org/10.1016/j.biombioe.2014.02.016.
Article
CAS
Google Scholar
Welker CAD, McKain MR, Vorontsova MS, Peichoto MC, Kellogg EA. Plastome phylogenomics of sugarcane and relatives confirms the segregation of the genus Tripidium (Poaceae: Andropogoneae). TAXON. 2019;68(2):246–67. https://doi.org/10.1002/tax.12030.
Article
Google Scholar
Valdés B, Scholz H. The euro+ med treatment of Gramineae — a generic synopsis and some new names. Willdenowia. 2006;36(2):657–69. https://doi.org/10.3372/wi.36.36202.
Article
Google Scholar
Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J Syst Evol. 2017;55(4):259–90. https://doi.org/10.1111/jse.12262.
Article
Google Scholar
Cv L. Species plantarum [...] Tomus II. Editio Secunda: Holmiae: Impensis direct Laurentii Salvii; 1763.
Google Scholar
Beauvois P, Joseph AMF. Essai d'une nouvelle Agrostographie: ou nouveaux genres des Graminees. Paris: Imprimerie de Fain; 1812.
Google Scholar
Chen S, Phillips S: Saccharum Linnaeus, Sp. Pl. 1: 54. 1753. In: Poaceae. Edited by committee FoCE, vol. 22. Beijing: Science Press; 2006;576–581.
Darke R. Encyclopedia of ornamental grasses for livable landscapes. Portland: Timber Press; 2007.
Google Scholar
Lacy B, Hoagland BW. Vascular flora of a riparian site on the Canadian River, Cleveland County, Oklahoma. Oklahoma Native Plant Record. 2006;6(1):69-79.
Lambert AM, Dudley TL, Saltonstall K. Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invas Plant Sci Mana. 2010;3(4):489–94. https://doi.org/10.1614/IPSM-D-10-00031.1.
Article
Google Scholar
Winston RL, DesCamp W, Andreas JE, Randall CB, Milan J, Scharzlander M. New invaders of the southwest. In: Forest health technology Enterprise team, Univ Idaho extension; 2014.
Google Scholar
Barkworth ME, Anderton LK, Capels KM, Long S, Piep MB. Manual of grasses for North America: University Press of Colorado; 2007. https://doi.org/10.2307/j.ctt4cgkq1.
Book
Google Scholar
Vincent MA, Gardener RL: Spread of the invasive Ravenna grass (Tripidium ravennae, Poaceae) in Ohio. Phytoneuron. 2016;78:1–9.
Li H, Guo J, Zhang C, Zheng W, Song Y, Wang Y. Identification of differentially expressed miRNAs between a wheat K-type cytoplasmic male sterility line and its near-isogenic restorer line. Plant Cell Physiol. 2019;60(7):1604–18. https://doi.org/10.1093/pcp/pcz065.
Article
CAS
PubMed
Google Scholar
Preston JC, Fjellheim S. Understanding past, and predicting future, niche transitions based on grass flowering time variation. Plant Physiol. 2020;183(3):822–39. https://doi.org/10.1104/pp.20.00100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar RR, Goswami S, Sharma SK, Kala YK, Rai GK, Mishra DC, et al. Harnessing next generation sequencing in climate change: RNA-Seq analysis of heat stress-responsive genes in wheat (Triticum aestivum L.). OMICS. 2015;19(10):632–47. https://doi.org/10.1089/omi.2015.0097.
Article
CAS
PubMed
PubMed Central
Google Scholar
Digel B, Pankin A, von Korff M. Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell. 2015;27(9):2318–34. https://doi.org/10.1105/tpc.15.00203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulki MA, Bi X, von Korff M. FLOWERING LOCUS T3 controls spikelet initiation but not floral development. Plant Physiol. 2018;178(3):1170–86. https://doi.org/10.1104/pp.18.00236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Bailey PC, et al. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. PLoS One. 2012;7(9):e45307. https://doi.org/10.1371/journal.pone.0045307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tornqvist C-E, Vaillancourt B, Kim J, Buell CR, Kaeppler SM, Casler MD. Transcriptional analysis of flowering time in switchgrass. Bioenerg Res. 2017;10(3):700–13. https://doi.org/10.1007/s12155-017-9832-9.
Article
CAS
Google Scholar
Xiang LX, He D, Dong WR, Zhang YW, Shao JZ. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics. 2010;11(1):472. https://doi.org/10.1186/1471-2164-11-472.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Q, Ma X, Mo C, Wilson IW, Song C, Zhao H, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics. 2011;12(1):343. https://doi.org/10.1186/1471-2164-12-343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colasanti J, Coneva V. Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiol. 2009;149(1):56–62. https://doi.org/10.1104/pp.108.130500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang DB, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol. 2014;65(1):553–78. https://doi.org/10.1146/annurev-arplant-050213-040104.
Article
CAS
PubMed
Google Scholar
Whipple CJ. Grass inflorescence architecture and evolution: the origin of novel signaling centers. New Phytol. 2017;216(2):367–72. https://doi.org/10.1111/nph.14538.
Article
PubMed
Google Scholar
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, et al. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reprod. 2018;31(3):291–307. https://doi.org/10.1007/s00497-018-0337-2.
Article
CAS
PubMed
Google Scholar
Jo L, Pelletier JM, Harada JJ. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. J Integr Plant Biol. 2019;61(5):564–80. https://doi.org/10.1111/jipb.12806.
Article
CAS
PubMed
Google Scholar
Zhao T, Holmer R, de Bruijn S, Angenent GC, van den Burg HA, Schranz ME. Phylogenomic synteny network analysis of MADS-Box transcription factor genes reveals lineage-specific transpositions, ancient tandem duplications, and deep positional conservation. Plant Cell. 2017;29(6):1278–92. https://doi.org/10.1105/tpc.17.00312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munster T, Wingen LU, Faigl W, Werth S, Saedler H, Theissen G. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene. 2001;262(1-2):1–13. https://doi.org/10.1016/S0378-1119(00)00556-4.
Article
CAS
PubMed
Google Scholar
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–6. https://doi.org/10.1038/nature07723.
Article
CAS
PubMed
Google Scholar
Li J, Gao K, Yang X, Khan WU, Guo B, Guo T, et al. Identification and characterization of the CONSTANS-like gene family and its expression profiling under light treatment in Populus. Int J Biol Macromol. 2020;161:999–1010. https://doi.org/10.1016/j.ijbiomac.2020.06.056.
Article
CAS
PubMed
Google Scholar
Preston JC, Kellogg EA. Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics. 2006;174(1):421–37. https://doi.org/10.1534/genetics.106.057125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Wu J, Luo Y, Bragg J, Anderson O, Vogel J, Gu YQ. Phylogenetic, molecular, and biochemical characterization of caffeic acid o-methyltransferase gene family in Brachypodium distachyon. Int J Plant Genomics. 2013;2013:1–12.
Jung JH, Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol. 2016;92(1-2):131–42. https://doi.org/10.1007/s11103-016-0499-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei B, Zhang RZ, Guo JJ, Liu DM, Li AL, Fan RC, et al. Genome-wide analysis of the MADS-Box gene family in Brachypodium distachyon. PLoS One. 2014;9(1):e84781. https://doi.org/10.1371/journal.pone.0084781.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dornelas MC, Patreze CM, Angenent GC, Immink RG. MADS: the missing link between identity and growth? Trends Plant Sci. 2011;16(2):89–97. https://doi.org/10.1016/j.tplants.2010.11.003.
Article
CAS
PubMed
Google Scholar
Reinheimer R, Kellogg EA. Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and Palea expression is new. Plant Cell. 2009;21(9):2591–605. https://doi.org/10.1105/tpc.109.068239.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herath V. The architecture of the GhD7 promoter reveals the roles of GhD7 in growth, development and the abiotic stress response in rice. Comput Biol Chem. 2019;82:1–8. https://doi.org/10.1016/j.compbiolchem.2019.06.004.
Article
CAS
PubMed
Google Scholar
Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, et al. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res. 2013;23(7):969–71. https://doi.org/10.1038/cr.2013.43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren Y, Chen D, Li W, Zhou D, Luo T, Yuan G, et al. OsSHOC1 and OsPTD1 are essential for crossover formation during rice meiosis. Plant J. 2019;98(2):315–28. https://doi.org/10.1111/tpj.14214.
Article
CAS
PubMed
Google Scholar
Bolaños-Villegas P, Yang X, Wang H-J, Juan C-T, Chuang M-H, Makaroff CA, et al. Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis. Plant J. 2013;75(6):927–40. https://doi.org/10.1111/tpj.12261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai XR, Gao XQ, Chen GH, Tang LL, Wang H, Zhang XS. ABNORMAL POLLEN TUBE GUIDANCE1, an endoplasmic reticulum-localized mannosyltransferase homolog of GLYCOSYLPHOSPHATIDYLINOSITOL10 in yeast and PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B in human, is required for Arabidopsis pollen tube micropylar GUIDANCE and embryo development. Plant Physiol. 2014;165(4):1544–56. https://doi.org/10.1104/pp.114.236133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li HJ, Xue Y, Jia DJ, Wang T, Hi DQ, Liu J, et al. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell. 2011;23(9):3288–302. https://doi.org/10.1105/tpc.111.088914.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development. 1998;125(11):1979–89.
Article
CAS
Google Scholar
Ko SS, Li MJ, Sun-Ben Ku M, Ho YC, Lin YJ, Chuang MH, et al. The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell. 2014;26(6):2486–504. https://doi.org/10.1105/tpc.114.126292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, et al. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genet. 2018;14(2):e1007238. https://doi.org/10.1371/journal.pgen.1007238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, et al. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell. 2007;19(8):2583–94. https://doi.org/10.1105/tpc.107.053199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapu NUS, Cosgrove DJ. Changes in growth and cell wall extensibility of maize silks following pollination. J Exp Bot. 2010;61(14):4097–107. https://doi.org/10.1093/jxb/erq225.
Article
CAS
PubMed
Google Scholar
Wolabu TW, Zhang F, Niu LF, Kalve S, Bhatnagar-Mathur P, Muszynski MG, et al. Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol. 2016;210(3):946–59. https://doi.org/10.1111/nph.13834.
Article
CAS
PubMed
Google Scholar
Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell. 2007;19(11):3516–29. https://doi.org/10.1105/tpc.107.055467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell. 2004;16(2):500–9. https://doi.org/10.1105/tpc.018044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XM, Xie B, Zhu MS, Zhang ZM, Hong ZL. Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis. Plant Mol Biol. 2012;78(1-2):31–44. https://doi.org/10.1007/s11103-011-9840-7.
Article
CAS
PubMed
Google Scholar
Wang XM, Gingrich DK, Deng YF, Hong ZL. A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis. Mol Biol Cell. 2012;23(8):1446–56. https://doi.org/10.1091/mbc.e11-09-0797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, Wang L, Wang M, Xu YY, Luo W, Liu YJ, et al. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J. 2009;7(8):791–806. https://doi.org/10.1111/j.1467-7652.2009.00444.x.
Article
CAS
PubMed
Google Scholar
Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, et al. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol. 2004;135(3):1502–13. https://doi.org/10.1104/pp.104.041996.
Article
PubMed
PubMed Central
Google Scholar
Robert HS, Quint A, Brand D, Vivian-Smith A, Offringa R. BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis development. Plant J. 2009;58(1):109–21. https://doi.org/10.1111/j.1365-313X.2008.03764.x.
Article
CAS
PubMed
Google Scholar
Portereiko MF, Sandaklie-Nikolova L, Lloyd A, Dever CA, Otsuga D, Drews GN. Nuclear fusion defective1 encodes the Arabidopsis RPL21M protein and is required for karyogamy during female gametophyte development and fertilization. Plant Physiol. 2006;141(3):957–65. https://doi.org/10.1104/pp.106.079319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becraft PW, Stinard PS, McCarty DR. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science. 1996;273(5280):1406–9. https://doi.org/10.1126/science.273.5280.1406.
Article
CAS
PubMed
Google Scholar
Hill A, Nantel A, Rock CD, Quatrano RS. A conserved domain of the viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors. J Biol Chem. 1996;271(7):3366–74. https://doi.org/10.1074/jbc.271.7.3366.
Article
CAS
PubMed
Google Scholar
Mjomba FM, Zheng Y, Liu HQ, Tang WQ, Hong ZL, Wang F, et al. Homeobox is pivotal for OsWUS controlling tiller development and female fertility in rice. G3-Genes Genom Genet. 2016;6(7):2013–21.
CAS
Google Scholar
Hundertmark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 2008;9(1):118. https://doi.org/10.1186/1471-2164-9-118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, et al. Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell. 2002;14(3):619–28. https://doi.org/10.1105/tpc.010454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez-Ribera I, La Paz JL, Repiso C, Garcia N, Miquel M, Hernandez ML, et al. The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size. Plant Physiol. 2014;164(3):1237–49. https://doi.org/10.1104/pp.113.233221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sreedhar R, Tiku PK. Cupincin: a unique protease purified from rice (Oryza sativa L.) bran is a new member of the cupin superfamily. PLoS One. 2016;11(4):e0152819.
Article
Google Scholar
Close TJ. Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant. 1997;100(2):291–6. https://doi.org/10.1111/j.1399-3054.1997.tb04785.x.
Article
CAS
Google Scholar
Kanno T, Bucher E, Daxinger L, Huettel B, Kreil DP, Breinig F, et al. RNA-directed DNA methylation and plant development require an IWR1-type transcription factor. EMBO Rep. 2010;11(1):65–71. https://doi.org/10.1038/embor.2009.246.
Article
CAS
PubMed
Google Scholar
Che J, Yamaji N, Shen RF, Ma JF. An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice. Plant J. 2016;88(1):132–42. https://doi.org/10.1111/tpj.13237.
Article
CAS
PubMed
Google Scholar
Santiago TR, Pereira VM, de Souza WR, Steindorff AS, Cunha B, Gaspar M, et al. Genome-wide identification, characterization and expression profile analysis of expansins gene family in sugarcane (Saccharum spp.). PLoS One. 2018;13(4):e0196140.
Article
Google Scholar
Narayan JA, Dharshini S, Manoj VM, Padmanabhan TSS, Kadirvelu K, Suresha GS, et al. Isolation and characterization of water-deficit stress-responsive alpha-expansin 1 (EXPA1) gene from Saccharum complex. 3 Biotech. 2019;9(5):186.
Article
Google Scholar
Malcomber ST, Kellogg EA. Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell. 2004;16(7):1692–706. https://doi.org/10.1105/tpc.021576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu C, Yang J, Box MS, Kellogg EA, Eveland AL. A dynamic co-expression map of early inflorescence development in Setaria viridis provides a resource for gene discovery and comparative genomics. Front Plant Sci. 2018;9:1309. https://doi.org/10.3389/fpls.2018.01309.
Article
PubMed
PubMed Central
Google Scholar
Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007;316(5827):1033–6. https://doi.org/10.1126/science.1141753.
Article
CAS
PubMed
Google Scholar
Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. P Natl Acad Sci USA. 2006;103(51):19581–6. https://doi.org/10.1073/pnas.0607142103.
Article
CAS
Google Scholar
Pearce S, Vanzetti LS, Dubcovsky J. Exogenous gibberellins induce wheat spike development under short days only in the presence of VERNALIZATION1. Plant Physiol. 2013;163(3):1433–45. https://doi.org/10.1104/pp.113.225854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenhard M, Bohnert A, Jurgens G, Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell. 2001;105(6):805–14. https://doi.org/10.1016/S0092-8674(01)00390-7.
Article
CAS
PubMed
Google Scholar
Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 2008;146(1):250–64. https://doi.org/10.1104/pp.107.109538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 2002;43(10):1096–105. https://doi.org/10.1093/pcp/pcf156.
Article
CAS
PubMed
Google Scholar
Duan YL, Xing Z, Diao ZJ, Xu WY, Li SP, Du XQ, et al. Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.). Plant Mol Biol. 2012;80(4–5):429–42. https://doi.org/10.1007/s11103-012-9958-2.
Article
CAS
PubMed
Google Scholar
Strable J, Vollbrecht E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy. Development. 2019;146(6):dev171181.
Article
CAS
Google Scholar
Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury PJ, Buckler ES, et al. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell. 2017;29(7):1622–41. https://doi.org/10.1105/tpc.16.00477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su YL, Liu JX, Liang WQ, Dou YH, Fu RF, Li WQ, et al. Wheat AGAMOUS LIKE 6 transcription factors function in stamen development by regulating the expression of TaAPETALA3. Development. 2019;146(20):dev177527.
Article
CAS
Google Scholar
Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun. 2013;4(1):1445. https://doi.org/10.1038/ncomms2396.
Article
CAS
PubMed
Google Scholar
Ji C, Li H, Chen L, Xie M, Wang F, Chen Y, et al. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant. 2013;6(5):1715–8. https://doi.org/10.1093/mp/sst046.
Article
CAS
PubMed
Google Scholar
Macaisne N, Vignard J, Mercier R. SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers. J Cell Sci. 2011;124(16):2687–91. https://doi.org/10.1242/jcs.088229.
Article
CAS
PubMed
Google Scholar
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859–75. https://doi.org/10.1093/bioinformatics/bti310.
Article
CAS
PubMed
Google Scholar
Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun. 2018;9(1):2638. https://doi.org/10.1038/s41467-018-05051-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5. https://doi.org/10.1126/science.1178534.
Article
CAS
PubMed
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9. https://doi.org/10.1093/bioinformatics/btl158.
Article
CAS
PubMed
Google Scholar
Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2. https://doi.org/10.1093/bioinformatics/bts565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;619832:1-12.
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(D1):D130–7. https://doi.org/10.1093/nar/gku1063.
Article
CAS
PubMed
Google Scholar
Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35. https://doi.org/10.1093/nar/gkn176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ. Smyth GK: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics. 2008;9(2):321–32. https://doi.org/10.1093/biostatistics/kxm030.
Article
PubMed
Google Scholar
Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16(1):169. https://doi.org/10.1186/s12859-015-0611-3.
Article
PubMed
PubMed Central
Google Scholar
Si Y, Liu P, Li P, Brutnell TP. Model-based clustering for RNA-seq data. Bioinformatics. 2014;30(2):197–205. https://doi.org/10.1093/bioinformatics/btt632.
Article
CAS
PubMed
Google Scholar
Zhao F, Maren NA, Kosentka PZ, Liao YY, Lu H, Duduit JR, et al. An optimized protocol for stepwise optimization of real-time RT-PCR analysis. Hort. Res. 2021 (in review).
Cheng Y, Bian W, Pang X, Yu J, Ahammed GJ, Zhou G, et al. Genome-wide identification and evaluation of reference genes for quantitative RT-PCR analysis during tomato fruit development. Front Plant Sci. 2017;8:1440. https://doi.org/10.3389/fpls.2017.01440.
Article
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar