Selcen D, Ohno K, Engel AG. Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. Brain. 2004;127(2):439–51. https://doi.org/10.1093/brain/awh052.
Article
PubMed
Google Scholar
Frank D, Kuhn C, Katus HA, Frey N. Role of the sarcomeric Z-disc in the pathogenesis of cardiomyopathy. Futur Cardiol. 2007;3(6):611–22. https://doi.org/10.2217/14796678.3.6.611.
Article
Google Scholar
Schröder R, Schoser B. Myofibrillar myopathies: a clinical and myopathological guide: mini-symposium: protein aggregate myopathies. Brain Pathol. 2009;19(3):483–92. https://doi.org/10.1111/j.1750-3639.2009.00289.x.
Article
CAS
PubMed
Google Scholar
Goldfarb LG, Park KY, Cervenákova L, Gorokhova S, Lee HS, Vasconcelos O, et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet. 1998;19(4):402–3. https://doi.org/10.1038/1300.
Article
CAS
PubMed
Google Scholar
Batonnet-Pichon S, Behin A, Cabet E, Delort F, Vicart P, Lilienbaum A. Myofibrillar myopathies: new perspectives from animal models to potential therapeutic approaches. J Neuromuscul Dis. 2017;4(1):1–5. https://doi.org/10.3233/JND-160203.
Article
PubMed
PubMed Central
Google Scholar
Fichna JP, Maruszak A, Żekanowski C. Myofibrillar myopathy in the genomic context. J Appl Genet. 2018;59(4):431–9. https://doi.org/10.1007/s13353-018-0463-4.
Article
CAS
PubMed
Google Scholar
Ferrer I, Olivé M. Molecular pathology of myofibrillar myopathies. Expert Rev Mol Med. 2008;10(25):1–21.
Google Scholar
Valberg SJ, McKenzie EC, Eyrich LV, Shivers J, Barnes NE, Finno CJ. Suspected myofibrillar myopathy in Arabian horses with a history of exertional rhabdomyolysis. Equine Vet J. 2016;48(5):548–56. https://doi.org/10.1111/evj.12493.
Article
CAS
PubMed
Google Scholar
Valberg SJ, Nicholson AM, Lewis SS, Reardon RA, Finno CJ. Clinical and histopathological features of myofibrillar myopathy in warmblood horses. Equine Vet J. 2017;49(6):739–45. https://doi.org/10.1111/evj.12702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams ZJ, Bertels M, Valberg SJ. Muscle glycogen concentrations and response to diet and exercise regimes in warmblood horses with type 2 polysaccharide storage myopathy. PLoS One. 2018;13(9):e0203467. https://doi.org/10.1371/journal.pone.0203467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claeys KG, Fardeau M, Schröder R, Suominen T, Tolksdorf K, Behin A, et al. Electron microscopy in myofibrillar myopathies reveals clues to the mutated gene. Neuromuscul Disord. 2008;18(8):656–66.
Article
CAS
Google Scholar
Valberg SJ, Finno CJ, Henry ML, Schott M, Velez-Irizarry D, Peng S, et al. Commercial genetic testing for type 2 polysaccharide storage myopathy and myofibrillar myopathy does not correspond to a histopathological diagnosis. Equine Vet J. 2020;8.
Williams ZJ, Velez-Irizarry D, Petersen JL, Ochala J, Finno CJ, Valberg SJ. Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Vet J. 2021;53(2):306.
Winter L, Wiche G. The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol. 2013;125(1):77–93. https://doi.org/10.1007/s00401-012-1026-0.
Article
CAS
PubMed
Google Scholar
Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B, De Winter V, et al. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol. 2018;135(1):131–48. https://doi.org/10.1007/s00401-017-1756-0.
Article
CAS
PubMed
Google Scholar
O’Grady GL, Best HA, Sztal TE, Schartner V, Sanjuan-Vazquez M, Donkervoort S, et al. Variants in the oxidoreductase PYROXD1 cause early-onset myopathy with internalized nuclei and myofibrillar disorganization. Am J Hum Genet. 2016;99(5):1086–105. https://doi.org/10.1016/j.ajhg.2016.09.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Chen Q, Huang W, Horak KM, Zheng H, Mestril R, et al. Impairment of the ubiquitin-proteasome system in desminopathy mouse hearts. FASEB J. 2006;20(2):362–4. https://doi.org/10.1096/fj.05-4869fje.
Article
CAS
PubMed
Google Scholar
Lin X, Ruiz J, Bajraktari I, Ohman R, Banerjee S, Gribble K, et al. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP) mutations in the actin-binding domain cause disruption of skeletal muscle actin filaments in myofibrillar myopathy. J Biol Chem. 2014;289(19):13615–26. https://doi.org/10.1074/jbc.M114.550418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ceciliani F, Restelli L, Lecchi C. Proteomics in farm animals models of human diseases. Proteomics Clin Appl. 2014;8(9–10):677–88. https://doi.org/10.1002/prca.201300080.
Article
CAS
PubMed
Google Scholar
Shelton GD, Sammut V, Homma S, Takayama S, Mizisin AP. Myofibrillar myopathy with desmin accumulation in a young Australian shepherd dog. Neuromuscul Disord. 2004;14(7):399–404. https://doi.org/10.1016/j.nmd.2004.03.010.
Article
PubMed
Google Scholar
Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9):1555. https://doi.org/10.3390/ijms17091555.
Article
PubMed Central
Google Scholar
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83. https://doi.org/10.1186/s13059-017-1215-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun YV, Hu YJ. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet. 2016;93:147–90.
Article
CAS
Google Scholar
Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19(5):299–310. https://doi.org/10.1038/nrg.2018.4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valberg SJ, Perumbakkam S, McKenzie EC, Finno CJ. Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways. Physiol Genomics. 2018;50(12):1036–50. https://doi.org/10.1152/physiolgenomics.00044.2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selcen D, Engel AG. Myofibrillar myopathies. Handb Clin Neurol. 2011;101:143–54.
Article
Google Scholar
Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle Cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol. 2002;18(1):637–706. https://doi.org/10.1146/annurev.cellbio.18.012502.105840.
Article
CAS
PubMed
Google Scholar
Olivé M, Goldfarb L, Dagvadorj A, Sambuughin N, Paulin D, Li Z, et al. Expression of the intermediate filament protein synemin in myofibrillar myopathies and other muscle diseases. Acta Neuropathol. 2003;106(1):1–7. https://doi.org/10.1007/s00401-003-0695-0.
Article
CAS
PubMed
Google Scholar
Maerkens A, Olive M, Schreiner A, Feldkirchner S, Schessl J, Uszkoreit J, et al. New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropathol Commun. 2016;4(1):8. https://doi.org/10.1186/s40478-016-0280-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM protein: master regulator of cardiac and skeletal muscle functions. Gene. 2015;566(1):1–7. https://doi.org/10.1016/j.gene.2015.04.077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vafiadaki E, Arvanitis DA, Papalouka V, Terzis G, Roumeliotis TI, Spengos K, et al. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation. FEBS J. 2014;282(14):3261–79.
Article
Google Scholar
Maerkens A, Kley RA, Olivé M, Theis V, van der Ven PFM, Reimann J, et al. Differential proteomic analysis of abnormal intramyoplasmic aggregates in desminopathy. J Proteome. 2013;90:14–27. https://doi.org/10.1016/j.jprot.2013.04.026.
Article
CAS
Google Scholar
Kley RA, Maerkens A, Leber Y, Theis V, Schreiner A, van der Ven PFM, et al. A combined laser microdissection and mass spectrometry approach reveals new disease relevant proteins accumulating in aggregates of Filaminopathy patients. Mol Cell Proteomics. 2013;12(1):215–27. https://doi.org/10.1074/mcp.M112.023176.
Article
CAS
PubMed
Google Scholar
Frank D, Frey N. Cardiac Z-disc signaling network. J Biol Chem. 2011;286(12):9897–904. https://doi.org/10.1074/jbc.R110.174268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buyandelger B, Mansfield C, Knöll R. Mechano-signaling in heart failure. Pflugers Archiv European Journal of Physiology. 2014;466(6):1093–9. https://doi.org/10.1007/s00424-014-1468-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weins A, Schwarz K, Faul C, Barisoni L, Linke WA, Mundel P. Differentiation- and stress-dependent nuclear cytoplasmic redistribution of myopodin, a novel actin-bundling protein. J Cell Biol. 2001;155(3):393–404. https://doi.org/10.1083/jcb.200012039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ecarnot-Laubriet A, De Luca K, Vandroux D, Moisant M, Bernard C, Assem M, et al. Downregulation and nuclear relocation of MLP during the progression of right ventricular hypertrophy induced by chronic pressure overload. J Mol Cell Cardiol. 2000;32(12):2385–95. https://doi.org/10.1006/jmcc.2000.1269.
Article
CAS
PubMed
Google Scholar
Lontay B, Bodoor K, Weitzel DH, Loiselle D, Fortner C, Lengyel S, et al. Smoothelin-like 1 protein regulates myosin phosphatase-targeting subunit 1 expression during sexual development and pregnancy. J Biol Chem. 2010;285(38):29357–66. https://doi.org/10.1074/jbc.M110.143966.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulke-Lemée A, Turner SR, Mughal SH, Borman MA, Winkfein RJ, MacDonald JA. Mapping and functional characterization of the murine Smoothelin-like 1 promoter. BMC Mol Biol. 2011;12(1):10. https://doi.org/10.1186/1471-2199-12-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostek MC, Chen YW, Cuthbertson DJ, Shi R, Fedele MJ, Esser KA, et al. Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol Genomics. 2007;31(1):42–52. https://doi.org/10.1152/physiolgenomics.00151.2006.
Article
CAS
PubMed
Google Scholar
Vincent B, Windelinckx A, Nielens H, Ramaekers M, Van Leemputte M, Hespel P, et al. Protective role of α-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol. 2010;109(2):564–73. https://doi.org/10.1152/japplphysiol.01007.2009.
Article
CAS
PubMed
Google Scholar
McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003;13(2):88–97. https://doi.org/10.1034/j.1600-0838.2003.02477.x.
Article
PubMed
Google Scholar
Aoki S. BIORENDER: Biorender; 2017.
Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, et al. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci U S A. 2005;102(5):1655–60. https://doi.org/10.1073/pnas.0405488102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louis HA, Pino JD, Schmeichel KL, Pomiès P, Beckerle MC. Comparison of three members of the cysteine-rich protein family reveals functional conservation and divergent patterns of gene expression. J Biol Chem. 1997;272(43):27484–91. https://doi.org/10.1074/jbc.272.43.27484.
Article
CAS
PubMed
Google Scholar
Knoll R, Kostin S, Klede S, Savvatis K, Klinge L, Stehle I, et al. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circ Res. 2010;106(4):695–704. https://doi.org/10.1161/CIRCRESAHA.109.206243.
Article
CAS
PubMed
Google Scholar
Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K, et al. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet. 2008;17(18):2753–65. https://doi.org/10.1093/hmg/ddn160.
Article
CAS
PubMed
Google Scholar
Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. In: Biochemical Society Transactions; 2008.
Google Scholar
Abramov AY, Angelova PR. Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans. 2019;47(6):1963–9. https://doi.org/10.1042/BST20191042.
Article
CAS
PubMed
Google Scholar
Reimann J, Kunz WS, Vielhaber S, Kappes-Horn K, Schröder R. Mitochondrial dysfunction in myofibrillar myopathy. Neuropathol Appl Neurobiol. 2003;29(1):45–51. https://doi.org/10.1046/j.1365-2990.2003.00428.x.
Article
PubMed
Google Scholar
Janué A, Olivé M, Ferrer I. Oxidative stress in desminopathies and myotilinopathies: a link between oxidative damage and abnormal protein aggregation. Brain Pathol. 2007;17(4):377–88. https://doi.org/10.1111/j.1750-3639.2007.00087.x.
Article
CAS
PubMed
Google Scholar
Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol. 2009;65(6):677–86. https://doi.org/10.1002/ana.21644.
Article
CAS
PubMed
Google Scholar
Crawford RR, Prescott ET, Sylvester CF, Higdon AN, Shan J, Kilberg MS, et al. Human CHAC1 protein degrades glutathione, and mRNA induction is regulated by the transcription factors ATF4 and ATF3 and a bipartite ATF/CRE regulatory element. J Biol Chem. 2015;290(25):15878–91. https://doi.org/10.1074/jbc.M114.635144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mungrue IN, Pagnon J, Kohannim O, Gargalovic PS, Lusis AJ. CHAC1/MGC4504 is a novel Proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP Cascade. J Immunol. 2009;182(1):466–76. https://doi.org/10.4049/jimmunol.182.1.466.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández-Verdejo R, Vanwynsberghe AM, Essaghir A, Demoulin JB, Hai T, Deldicque L, et al. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J. 2017;31(2):840–51. https://doi.org/10.1096/fj.201600987R.
Article
PubMed
Google Scholar
Schwartz LM. Skeletal muscles do not undergo apoptosis during either atrophy or programmed cell death-revisiting the myonuclear domain hypothesis. Front Physiol. 2019;9:1887. https://doi.org/10.3389/fphys.2018.01887.
Article
PubMed
PubMed Central
Google Scholar
Steinberg SF. Oxidative stress and sarcomeric proteins. Circ Res. 2013;112(2):393–405. https://doi.org/10.1161/CIRCRESAHA.111.300496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delort F, Segard B-D, Hakibilen C, Bourgois-Rocha F, Cabet E, Vicart P, et al. Alterations of redox dynamics and desmin post-translational modifications in skeletal muscle models of desminopathies. Exp Cell Res. 2019;383(2):111539. https://doi.org/10.1016/j.yexcr.2019.111539.
Article
CAS
PubMed
Google Scholar
Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–31. https://doi.org/10.1002/mus.22094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boppart MD, Mahmassani ZS. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am J Phys Cell Phys. 2019;317(4):C629–41. https://doi.org/10.1152/ajpcell.00009.2019.
Article
CAS
Google Scholar
Vidal B, Serrano AL, Tjwa M, Suelves M, Ardite E, De Mori R, et al. Fibrinogen drives dystrophic muscle fibrosis via a TGFβ/alternative macrophage activation pathway. Genes Dev. 2008;22(13):1747–52. https://doi.org/10.1101/gad.465908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sparks SE, Quijano-Roy S, Harper A, Rutkowski A, Gordon E, Hoffman EP, et al. Congenital muscular dystrophy overview. In: GeneReviews®[Internet]. Seattle: University of Washington; 2012.
Google Scholar
Wallace GQ, McNally EM. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu Rev Physiol. 2009;71(1):37–57. https://doi.org/10.1146/annurev.physiol.010908.163216.
Article
CAS
PubMed
Google Scholar
Perkins AD, Ellis SJ, Asghari P, Shamsian A, Moore ED, Tanentzapf G. Integrin-mediated adhesion maintains sarcomeric integrity. Dev Biol. 2010;338(1):15–27. https://doi.org/10.1016/j.ydbio.2009.10.034.
Article
CAS
PubMed
Google Scholar
Knöll R, Buyandelger B. The sarcomeric Z-disc and Z-discopathies. Biomed Res Int. 2011;18:2011.
Google Scholar
Mizuno Y, Thompson TG, Guyon JR, Lidov HG, Brosius M, Imamura M, et al. Desmuslin, an intermediate filament protein that interacts with α-dystrobrevin and desmin. Proc Natl Acad Sci. 2001;98(11):6156–61. https://doi.org/10.1073/pnas.111153298.
Article
CAS
PubMed
Google Scholar
García-Pelagio KP, Muriel J, O'Neill A, Desmond PF, Lovering RM, Lund L, et al. Myopathic changes in murine skeletal muscle lacking synemin. Am J Phys Cell Phys. 2015;308(6):C448–62. https://doi.org/10.1152/ajpcell.00331.2014.
Article
CAS
Google Scholar
Pashmforoush M, Pomiès P, Peterson KL, Kubalak S, Ross J, Hefti A, et al. Adult mice deficient in actinin–associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med. 2001;7(5):591–7. https://doi.org/10.1038/87920.
Article
CAS
PubMed
Google Scholar
Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A, et al. Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. Proc Natl Acad Sci. 2004;101(27):10132–6. https://doi.org/10.1073/pnas.0401900101.
Article
CAS
PubMed
Google Scholar
Kumarapeli AR, Horak KM, Glasford JW, Li J, Chen Q, Liu J, et al. A novel transgenic mouse model reveals deregulation of the ubiquitin-proteasome system in the heart by doxorubicin. FASEB J. 2005;19(14):2051–3. https://doi.org/10.1096/fj.05-3973fje.
Article
CAS
PubMed
Google Scholar
Olive M, Van Leeuwen FW, Janue A, Moreno D, Torrejón-Escribano B, Ferrer I. Expression of mutant ubiquitin (UBB+ 1) and p62 in myotilinopathies and desminopathies. Neuropathol Appl Neurobiol. 2008;34(1):76–87. https://doi.org/10.1111/j.1365-2990.2007.00864.x.
Article
CAS
PubMed
Google Scholar
Janué A, Odena MA, Oliveira E, Olivé M, Ferrer I. Desmin is oxidized and nitrated in affected muscles in myotilinopathies and desminopathies. J Neuropathol Exp Neurol. 2007;66(8):711–23. https://doi.org/10.1097/nen.0b013e3181256b4c.
Article
PubMed
Google Scholar
Chávez Zobel AT, Loranger A, Marceau N, Thériault JR, Lambert H, Landry J. Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G αB-crystallin mutant. Hum Mol Genet. 2003;12(13):1609–20. https://doi.org/10.1093/hmg/ddg173.
Article
PubMed
Google Scholar
Bova MP, Yaron O, Huang Q, Ding L, Haley DA, Stewart PL, et al. Mutation R120G in αB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc Natl Acad Sci. 1999;96(11):6137–42. https://doi.org/10.1073/pnas.96.11.6137.
Article
CAS
PubMed
Google Scholar
Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 2011;7(6):e1001393. https://doi.org/10.1371/journal.pgen.1001393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19(3):1720–30. https://doi.org/10.1128/MCB.19.3.1720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002;1(4):304–13. https://doi.org/10.1074/mcp.M200008-MCP200.
Article
CAS
PubMed
Google Scholar
Bathke J, Konzer A, Remes B, McIntosh M, Klug G. Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC Genomics. 2019;20(1):358. https://doi.org/10.1186/s12864-019-5749-3.
Article
PubMed
PubMed Central
Google Scholar
Haider S, Pal R. Integrated analysis of transcriptomic and proteomic data. Current genomics. 2013;14(2):91–110. https://doi.org/10.2174/1389202911314020003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freiberg JA, Le Breton Y, Tran BQ, Scott AJ, Harro JM, Ernst RK, et al. Global analysis and comparison of the transcriptomes and proteomes of group a Streptococcus biofilms. Msystems. 2016;1(6):e00149–16.
Article
Google Scholar
Zak RA, Martin AF, Prior G, Rabinowitz M. Comparison of turnover of several myofibrillar proteins and critical evaluation of double isotope method.[Tritium,/sup 14/C tracer techniques]. J. Biol. Chem. (United States). 1977;252(10).
Wang J, Shaner N, Mittal B, Zhou Q, Chen J, Sanger JM, et al. Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil Cytoskeleton. 2005;61(1):34–48. https://doi.org/10.1002/cm.20063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snow DH, Guy PS. Percutaneous needle muscle biopsy in the horse. Equine Vet J. 1976;8(4):150–5. https://doi.org/10.1111/j.2042-3306.1976.tb03327.x.
Article
CAS
PubMed
Google Scholar
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62. https://doi.org/10.1038/nmeth.1322.
Article
CAS
PubMed
Google Scholar
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2(8):1896–906. https://doi.org/10.1038/nprot.2007.261.
Article
CAS
PubMed
Google Scholar
Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75(8):1895–904. https://doi.org/10.1021/ac0262560.
Article
CAS
PubMed
Google Scholar
McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem. 2012;84(17):7469–78. https://doi.org/10.1021/ac301572t.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75(17):4646–58. https://doi.org/10.1021/ac0341261.
Article
CAS
PubMed
Google Scholar
Shadforth IP, Dunkley TPJ, Lilley KS, Bessant C. I-tracker: for quantitative proteomics using iTRAQ™. BMC Genomics. 2005;6(1):145. https://doi.org/10.1186/1471-2164-6-145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oberg AL, Mahoney DW, Eckel-Passow JE, Malone CJ, Wolfinger RD, Hill EG, et al. Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. J Proteome Res. 2008;7(1):225–33. https://doi.org/10.1021/pr700734f.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47(Database):D442–50.
Article
CAS
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. 2010.
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–8. https://doi.org/10.1093/bioinformatics/btw354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smeds L, Künstner A. ConDeTri - a content dependent read trimmer for illumina data. PLoS One. 2011;6(10):e26314.
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. https://doi.org/10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638.
Article
CAS
PubMed
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93. https://doi.org/10.1093/bioinformatics/btr509.
Article
CAS
PubMed
PubMed Central
Google Scholar
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–23. https://doi.org/10.3168/jds.2007-0980.
Article
CAS
PubMed
Google Scholar
Carlson M. org. Hs.eg.db: Genome wide annotation for Human. R package version 3.8.2 [Internet]. Bioconductor; 2019. Available from: https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
Farries G, Bryan K, McGivney CL, McGettigan PA, Gough KF, Browne JA, et al. Expression quantitative trait loci in equine skeletal muscle reveals heritable variation in metabolism and the training responsive transcriptome. Front Genet. 2019;10:1215. https://doi.org/10.3389/fgene.2019.01215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farries G, Bryan K, McGivney CL, McGettigan PA, Gough KF, Browne JA, et al. Identification of expression quantitative trait loci in the skeletal muscle of Thoroughbreds reveals heritable variation in expression of genes relevant to cofactor metabolism. bioRxiv. 2019;1:713669.
Google Scholar
Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.
Article
CAS
Google Scholar
Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol BioSyst. 2016;12(2):477–9. https://doi.org/10.1039/C5MB00663E.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.
Article
CAS
PubMed
Google Scholar
Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):1–7.
Article
Google Scholar
Branson OE, Freitas MA. A multi-model statistical approach for proteomic spectral count quantitation. J Proteome. 2016;144:23–32. https://doi.org/10.1016/j.jprot.2016.05.032.
Article
CAS
Google Scholar
Min EJ, Safo SE, Long Q. Penalized co-inertia analysis with applications to-omics data. Bioinformatics. 2019;35(6):1018–25. https://doi.org/10.1093/bioinformatics/bty726.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51. https://doi.org/10.1002/pro.3715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tulloch LK, Perkins JD, Piercy RJ. Multiple immunofluorescence labelling enables simultaneous identification of all mature fibre types in a single equine skeletal muscle cryosection. Equine Vet J. 2011;43(4):500–3. https://doi.org/10.1111/j.2042-3306.2010.00329.x.
Article
CAS
PubMed
Google Scholar