International Chicken Genome Sequencing Consortium: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004, 432: 695-716. 10.1038/nature03154.
Google Scholar
Burt DW: Emergence of the chicken as a model organism: implications for agriculture and biology. Poult Sci. 2007, 86: 1460-1471.
CAS
PubMed
Google Scholar
Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC, Zhu JJ, Cheng HH, Dodgson JB, Burnside J: Functional genomics of the chicken–a model organism. Poult Sci. 2007, 86: 2059-2094.
CAS
PubMed
Google Scholar
Dodgson JB: The chicken genome: some good news and some bad news. Poult Sci. 2007, 86: 1453-1459.
CAS
PubMed
Google Scholar
Stern CD: The chick: a great model system becomes even greater. Dev Cell. 2005, 8: 9-17.
CAS
PubMed
Google Scholar
Model Organisms for Biomedical Research.http://www.nih.gov/science/models,
Belo PS, Romsos DR, Leveille GA: Blood metabolites and glucose metabolism in the fed and fasted chicken. J Nutr. 1976, 106: 1135-1143.
CAS
PubMed
Google Scholar
Simon J: Chicken as a useful species for the comprehension of insulin action. Crit Rev Poult Biol. 1989, 2: 121-148.
Google Scholar
Simon J: Insulin in birds: metabolic effects and possible implications in genetically fat and lean chickens. Leanness in domestic birds.--Genetic, metabolic and hormonal aspects. Edited by: Leclercq B, Whitehead CC. 1987, London: Butterworths, 253-268.
Google Scholar
Simon J, Guillaumin S, Chevalier B, Derouet M, Guy G, Marche G, Ricard FH, Leclercq B: Plasma glucose-insulin relationship in chicken lines selected for high or low fasting glycaemia. Br Poult Sci. 2000, 41: 424-429. 10.1080/713654969.
CAS
PubMed
Google Scholar
Touchburn S, Simon J, Leclercq B: Evidence of a glucose-insulin imbalance and effect of dietary protein and energy level in chickens selected for high abdominal fat content. J Nutr. 1981, 325: 335-
Google Scholar
Goodridge AG, Ball EG: Lipogenesis in the pigeon: in vivo studies. Amer J Physiol. 1967, 213: 245-249.
CAS
PubMed
Google Scholar
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Perusse L, Bouchard C: The human obesity gene map: the 2005 update. Obesity (Silver Spring). 2006, 14: 529-644. 10.1038/oby.2006.71.
Google Scholar
Ikeobi CON, Woolliams JA, Morrice DR, Windsor D, Burt DW, Hocking PM: Quantitative trait loci affecting fatness in the chicken. Anim Genet. 2002, 33: 428-435. 10.1046/j.1365-2052.2002.00911.x.
CAS
PubMed
Google Scholar
Jennen DGJ, Vereijken ALJ, Bovenhuis H, Crooijmans RPMA, Veenendaal A, van der Poel JJ, Groenen MAM: Detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci. 2004, 83: 295-301.
CAS
PubMed
Google Scholar
Abasht B, Pitel F, Lagarrigue S, Le Bihan-Duval E, Pascale LR, Demeure O, Vignoles F, Simon J, Cogburn L, Aggrey S, Vignal A, Douaire M: Fatness QTL on chicken chromosome 5 and interaction with sex. Genet Sel Evol. 2006, 38: 297-311. 10.1186/1297-9686-38-3-297.
PubMed Central
CAS
PubMed
Google Scholar
Lagarrigue S, Pitel F, Carré W, Abasht B, Le Roy P, Neau A, Amigues Y, Sourdioux M, Simon J, Cogburn LA, Aggrey S, Leclercq B, Vignal A, Douaire M: Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet Sel Evol. 2006, 38: 85-97. 10.1186/1297-9686-38-1-85.
PubMed Central
CAS
PubMed
Google Scholar
Mignon GL, Pitel F, Gilbert H, Bihan-Duval EL, Vignoles F, Demeure O, Lagarrigue S, Simon J, Cogburn LA, Aggrey SE, Douaire M, Roy PL: A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach. Anim Genet. 2008, 40: 157-164.
Google Scholar
Le Mignon G, Desert C, Pitel F, Leroux S, Demeure OI, Guernec G, Abasht B, Douaire M, Le Roy P, Lagarrigue S: Using transcriptome profiling to characterize QTL regions on chicken chromosome 5. BMC Genomics. 2009, 10: 575-10.1186/1471-2164-10-575.
PubMed Central
PubMed
Google Scholar
Simon J, Milenkovic D, Godet E, Cabau C, Collin A, Metayer-Coustard S, Rideau N, Tesseraud S, Derouet M, Crochet S, Cailleau-Audouin E, Hennequet-Antier C, Gespach C, Porter TE, Duclos MJ, Dupont J, Cogburn LA: Insulin immuno-neutralization in fed chickens: effects on liver and muscle transcriptome. Physiol Genomics. 2012, 44: 283-292. 10.1152/physiolgenomics.00057.2011.
CAS
PubMed
Google Scholar
Ji B, Ernest B, Gooding J, Das S, Saxton A, Simon J, Dupont J, Metayer-Coustard S, Campagna S, Voy B: Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting. BMC Genomics. 2012, 13: 441-10.1186/1471-2164-13-441.
PubMed Central
CAS
PubMed
Google Scholar
Dupont J, Métayer-Coustard S, Ji B, Ramé C, Gespach C, Voy B, Simon J: Characterization of major elements of insulin signaling cascade in chicken adipose tissue: apparent insulin refractoriness. Gen Comp Endocrinol. 2012, 176: 86-93. 10.1016/j.ygcen.2011.12.030.
CAS
PubMed
Google Scholar
Nilsson C, Raun K, Yan F, Larsen MO, Tang-Christensen M: Laboratory animals as surrogate models of human obesity. Acta Pharmacol Sin. 2012, 33: 173-181. 10.1038/aps.2011.203.
PubMed Central
CAS
PubMed
Google Scholar
Leclercq B, Blum JC, Boyer JP: Selecting broilers for low or high abdominal fat: initial observations. Brit Poult Sci. 1980, 21: 107-113. 10.1080/00071668008416644.
Google Scholar
Baéza E, Le Bihan-Duval E: Chicken lines divergent for low or high abdominal fat deposition: a relevant model to study the regulation of energy metabolism. Animal. 2013, 7: 965-973. 10.1017/S1751731113000153.
PubMed
Google Scholar
Leclercq B: Genetic selection of meat-type chickens for high or low abdominal fat content. Leanness in Domestic Birds. Edited by: Leclercq B, Whitehead CC. 1988, London: Butterworths, 25-40.
Google Scholar
Simon J, Leclercq B: Longitudinal study of adiposity in chickens selected for high or low abdominal fat content; further evidence of a glucose-insulin imbalance in the fat line. J Nutr. 1982, 112: 1961-1973.
CAS
PubMed
Google Scholar
Hermier D, Quignard-Boulange A, Dugail I, Guy G, Salichon MR, Brigant L, Ardouin B, Leclercq B: Evidence of enhanced storage capacity in adipose tissue of genetically fat chickens. J Nutr. 1989, 119: 1369-1375.
CAS
PubMed
Google Scholar
Carré W, Bourneuf E, Douaire M, Diot C: Differential expression and genetic variation of hepatic messenger RNAs from genetically lean and fat chickens. Gene. 2002, 299: 235-243. 10.1016/S0378-1119(02)01077-6.
PubMed
Google Scholar
Daval S, Lagarrigue S, Douaire M: Messenger RNA levels and transcription rates of hepatic lipogenesis genes in genetically lean and fat chickens. Genet Sel Evol. 2000, 32: 521-531. 10.1186/1297-9686-32-5-521.
PubMed Central
CAS
PubMed
Google Scholar
Assaf S, Lagarrigue S, Daval S, Sansom M, Leclercq B, Michel J, Pitel F, Alizadeh M, Vignal A, Douaire M: Genetic linkage and expression analysis of SREBP and lipogenic genes in fat and lean chicken. Comp Biochem Physiol B, Biochem Mol Biol. 2004, 137: 433-441. 10.1016/j.cbpc.2004.02.005.
PubMed
Google Scholar
Bourneuf E, Herault F, Chicault C, Carre W, Assaf S, Monnier A, Mottier S, Lagarrigue S, Douaire M, Mosser J, Diot C: Microarray analysis of differential gene expression in the liver of lean and fat chickens. Gene. 2006, 372: 162-170.
CAS
PubMed
Google Scholar
Le Mignon G, Pitel F, Gilbert H, LeBihan-Duval E, Vignoles F, Demeure O, Lagarrigue S, Simon J, Cogburn LA, Aggrey SE, Douarin NM, Le Roy P: A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach. Anim Genet. 2009, 40: 157-164. 10.1111/j.1365-2052.2008.01817.x.
CAS
PubMed
Google Scholar
Chirgwin JM, Przybla AE, MacDonald RJ, Rutter WJ: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979, 18: 5294-5299. 10.1021/bi00591a005.
CAS
PubMed
Google Scholar
Life Technologies.http://www.invitrogen.com/,
Smyth GK: Limma: Linear models for microarray data. 2005, New York: Springer, 397-420.
Google Scholar
Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3: Article3-
PubMed
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc. 1995, 57B: 289-300.
Google Scholar
Cotton EST Database.http://www.leonxie.com/referencegene.php,
Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: research0034-
PubMed Central
PubMed
Google Scholar
Cogburn Laboratory.http://cogburn.dbi.udel.edu/,
Ingenuity Systems.http://www.ingenuity.com/,
Leclercq B, Hermier D, Guy G: Metabolism of very low density lipoproteins in genetically lean or fat lines of chicken. Reprod Nutr Dev. 1990, 30: 701-715. 10.1051/rnd:19900607.
CAS
PubMed
Google Scholar
Geraert PA, Macleod MG, Leclercq B: Energy metabolism in genetically fat and lean chickens: diet-and cold-induced thermogenesis. J Nutr. 1988, 118: 1232-1239.
CAS
PubMed
Google Scholar
Saadoun A, Leclercq B: In vivo lipogenesis in genetically fat and lean chickens of various ages. Comp Biochem Physiol. 1986, 83B: 607-611.
CAS
Google Scholar
Saadoun A, Leclercq B: In vivo lipogenesis of genetically lean and fat chickens: effects of nutritional state and dietary fat. J Nutr. 1987, 117: 428-435.
CAS
PubMed
Google Scholar
Faber DR, De Groot PG, Visseren FLJ: Role of adipose tissue in haemostasis, coagulation and fibrinolysis. Obes Rev. 2009, 10: 554-563. 10.1111/j.1467-789X.2009.00593.x.
CAS
PubMed
Google Scholar
Allman-Farinelli MA: Obesity and venous thrombosis: a review. Semin Thromb Hemost. 2011, 37: 903-907. 10.1055/s-0031-1297369.
PubMed
Google Scholar
Schäfer K, Konstantinides S: Adipokines and thrombosis. Clin Exper Pharmacol and Physiol. 2011, 38: 864-871. 10.1111/j.1440-1681.2011.05589.x.
Google Scholar
Lorenzet R, Napoleone E, Cutrone A, Donati MB: Thrombosis and obesity: cellular bases. Thromb Res. 2012, 129: 285-289. 10.1016/j.thromres.2011.10.021.
CAS
PubMed
Google Scholar
Palomo I, Alarcon M, Moore-Carrasco R, Argiles JM: Hemostasis alterations in metabolic syndrome (review). Int J Mol Med. 2006, 18: 969-974.
CAS
PubMed
Google Scholar
Heaton JH, Dlakic WM, Dlakic M, Gelehrter TD: Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the type-1 plasminogen activator inhibitor mRNA. J Biol Chem. 2001, 276: 3341-3347. 10.1074/jbc.M006538200.
CAS
PubMed
Google Scholar
Zhang L, Kanda Y, Roberts DJ, Ecker JL, Losel R, Wehling M, Peluso JJ, Pru JK: Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA binding protein in uterine and placental tissues of the mouse and human. Mol Cell Endocrinol. 2008, 287: 81-89. 10.1016/j.mce.2008.02.012.
CAS
PubMed
Google Scholar
Shitaye HS, Terkhorn SP, Combs JA, Hankenson KD: Thrombospondin-2 is an endogenous adipocyte inhibitor. Matrix Biol. 2010, 29: 549-556. 10.1016/j.matbio.2010.05.006.
PubMed Central
CAS
PubMed
Google Scholar
Ernst MC, Sinal CJ: Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol Metab. 2010, 21: 660-667. 10.1016/j.tem.2010.08.001.
CAS
PubMed
Google Scholar
Bondue B, Wittamer V, Parmentier M: Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev. 2011, 22: 331-338. 10.1016/j.cytogfr.2011.11.004.
CAS
PubMed
Google Scholar
Roman AA, Parlee SD, Sinal CJ: Chemerin: a potential endocrine link between obesity and type 2 diabetes. Endocrine. 2012, 42: 243-251. 10.1007/s12020-012-9698-8.
CAS
PubMed
Google Scholar
Yoshimura T, Oppenheim JJ: Chemerin reveals its chimeric nature. J Exp Med. 2008, 205: 2187-2190. 10.1084/jem.20081736.
PubMed Central
CAS
PubMed
Google Scholar
Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, Arner P, Eckel J: Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes. 2009, 58: 2731-2740. 10.2337/db09-0277.
PubMed Central
CAS
PubMed
Google Scholar
Yang H, Li F, Kong X, Yuan X, Wang W, Huang R, Li T, Geng M, Wu G, Yin Y: Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways. Cytokine. 2012, 60: 646-652. 10.1016/j.cyto.2012.07.033.
CAS
PubMed
Google Scholar
Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, Muruganandan S, Sinal CJ: Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007, 282: 28175-28188. 10.1074/jbc.M700793200.
CAS
PubMed
Google Scholar
Bozaoglu K, Segal D, Shields KA, Cummings N, Curran JE, Comuzzie AG, Mahaney MC, Rainwater DL, VandeBerg JL, MacCluer JW, Collier G, Blangero J, Walder K, Jowett JBM: Chemerin Is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocr Metab. 2009, 94: 3085-3088. 10.1210/jc.2008-1833.
PubMed Central
CAS
PubMed
Google Scholar
Bozaoglu K, Curran JE, Stocker CJ, Zaibi MS, Segal D, Konstantopoulos N, Morrison S, Carless M, Dyer TD, Cole SA, Goring HHH, Moses EK, Walder K, Cawthorne MA, Blangero J, Jowett JBM: Chemerin, a novel adipokine in the regulation of angiogenesis. J Clin Endocrinol Metab. 2010, 95: 2476-2485. 10.1210/jc.2010-0042.
PubMed Central
CAS
PubMed
Google Scholar
Conroy R, Espinal Y, Fennoy I, Accacha S, Boucher-Berry C, Carey D, Close S, DeSantis D, Gupta R, Hassoun A, Iazzetti L, Jacques F, Jean A, Michel L, Pavlovich K, Rapaport R, Rosenfeld W, Shamoon E, Shelov S, Speiser P, Ten S, Rosenbaum M: Retinol binding protein 4 is associated with adiposity-related co-morbidity risk factors in children. J Pediatr Endocrinol Metab. 2011, 24: 913-919.
CAS
PubMed
Google Scholar
Shehzad A, Igbal W, Shehzad O, Lee YS: Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens). 2012, 11: 8-20.
Google Scholar
Matarese G, La Cava A: The intricate interface between immune system and metabolism. Trends Immunol. 2004, 25: 193-200. 10.1016/j.it.2004.02.009.
CAS
PubMed
Google Scholar
Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W: Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 2000, 275: 28488-28493.
CAS
PubMed
Google Scholar
Shan L, Yu XC, Liu Z, Hu Y, Sturgis LT, Miranda ML, Liu Q: The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem. 2009, 284: 1419-1424.
PubMed Central
CAS
PubMed
Google Scholar
Lei X, Shi F, Basu D, Huq A, Routhier S, Day R, Jin W: Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J Biol Chem. 2011, 286: 15747-15756. 10.1074/jbc.M110.217638.
PubMed Central
CAS
PubMed
Google Scholar
Friedman-Einat M, Boswell T, Horev G, Girishvarma G, Dunn IC, Talbot RT, Sharp PJ: The chicken leptin gene: Has it been cloned?. Gen Comp Endocrinol. 1999, 115: 354-363. 10.1006/gcen.1999.7322.
CAS
PubMed
Google Scholar
Sharp PJ, Dunn IC, Waddington D: Chicken leptin. Gen Comp Endocrinol. 2008, 158: 2-4. 10.1016/j.ygcen.2008.05.018.
CAS
PubMed
Google Scholar
Simon J, Rideau N, Taouis M: Reply to viewpoints by PJ Sharp, IC Dunn, D Waddington and T Boswell [Chicken Leptin: General and Comparative Endocrinology, 158, 2–4 (2008)]. Gen Comp Endocrinol. 2009, 161: 159-
CAS
PubMed
Google Scholar
Pitel F, Faraut T, Bruneau G, Monget P: Is there a leptin gene in the chicken genome? Lessons from phylogenetics, bioinformatics and genomics. Gen Comp Endocrinol. 2010, 167: 1-5. 10.1016/j.ygcen.2009.10.006.
CAS
PubMed
Google Scholar
Yosefi S, Hen G, Rosenblum CI, Cerasale DJ, Beaulieu M, Criscuolo F, Friedman-Einat M: Lack of leptin activity in blood samples of Adélie penguin and bar-tailed godwit. J Endocrinol. 2010, 207: 113-122. 10.1677/JOE-10-0177.
CAS
PubMed
Google Scholar
Carré W, Wang X, Porter TE, Nys Y, Tang J-S, Bernberg E, Morgan R, Burnside J, Aggrey SE, Simon J, Cogburn LA: Chicken genomics resource: sequencing and annotation of 35,407 chicken ESTs from single and multiple tissue cDNA libraries and CAP3 assembly of a chicken gene index. Physiol Genomics. 2006, 25: 514-524. 10.1152/physiolgenomics.00207.2005.
PubMed
Google Scholar
Horev G, Einat P, Aharoni T, Eshdat Y, Friedman-Einat M: Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene. Mol Cell Enocrinol. 2000, 162: 95-106. 10.1016/S0303-7207(00)00205-7.
CAS
Google Scholar
Ohkubo T, Tanaka M, Nakashima K: Structure and tissue distribution of chicken leptin receptor (cOb-R) mRNA. Biochem Biophys Acta. 2000, 1491: 303-308. 10.1016/S0167-4781(00)00046-4.
CAS
PubMed
Google Scholar
Cogburn LA, Wang X, Carré W, Rejto L, Porter TE, Aggrey SE, Simon J: Systems-wide chicken DNA microarrays, gene expression profiling and discovery of functional genes. Poult Sci. 2003, 82: 939-951.
CAS
PubMed
Google Scholar
Byerly MS, Simon J, Cogburn LA, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Porter TE: Transcriptional profiling of hypothalamus during development of adiposity in genetically selected fat and lean chickens. Physiol Genomics. 2010, 42: 157-167. 10.1152/physiolgenomics.00029.2010.
PubMed Central
CAS
PubMed
Google Scholar
Adachi H, Takemoto Y, Bungo T, Ohkubo T: Chicken leptin receptor is functional in activating JAK-STAT pathway in vitro. J Endocrnol. 2008, 197: 335-342. 10.1677/JOE-08-0098.
CAS
Google Scholar
Hen G, Yosefi S, Ronin A, Einat P, Rosenblum CI, Denver RJ, Friedman-Einat M: Monitoring leptin activity using the chicken leptin receptor. J Endocrinol. 2008, 197: 325-333. 10.1677/JOE-08-0065.
CAS
PubMed
Google Scholar
Le Bihan-Duval E, Nadaf J, Berri C, Pitel F, Graulet B, Godet E, Leroux SY, Demeure O, Lagarrigue S, Duby C, Cogburn LA, Beaumont CM, Duclos MJ: Detection of a cis eQTL controlling BCMO1 gene expression leads to the identification of a QTG for chicken breast meat color. Plos One. 2011, 6: e14825-10.1371/journal.pone.0014825.
PubMed Central
CAS
PubMed
Google Scholar
Tourniaire F, Gouranton E, von Lintig J, Keijer J, Luisa BM, Amengual J, Lietz G, Landrier JF: b-Carotene conversion products and their effects on adipose tissue. Genes Nutr. 2009, 4: 179-187. 10.1007/s12263-009-0128-3.
PubMed Central
CAS
PubMed
Google Scholar
Eriksson J, Larson G, Gunnarsson U, Bed’hom B, Tixier-Boichard M, Strömstedt L, Wright D, Jungerius A, Vereijken A, Randi E, Jensen P, Andersson L: Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 2008, 4: e1000010-10.1371/journal.pgen.1000010.
PubMed Central
PubMed
Google Scholar
Amengual J, Gouranton E, van Helden YGJ, Hessel S, Ribot J, Kramer E, Kiec-Wilk B, Razny U, Lietz G, Wyss A, Dembinska-Kiec A, Palou A, Keijer J, Landrier JF, Bonet ML, von Lintig J: Beta-carotene reduces body adiposity of mice via BCMO1. Plos One. 2011, 6: e20644-10.1371/journal.pone.0020644.
PubMed Central
CAS
PubMed
Google Scholar
Marchildon F, St-Louis C, Akter R, Roodman V, Wiper-Bergeron NL: Transcription factor Smad3 is required for the inhibition of adipogenesis by retinoic acid. J Biol Chem. 2010, 285: 13274-13284. 10.1074/jbc.M109.054536.
PubMed Central
CAS
PubMed
Google Scholar
Wang HB, Wang QG, Zhang XY, Gu XF, Wang N, Wu SB, Li H: Microarray analysis of genes differentially expressed in the liver of lean and fat chickens. Animal. 2010, 4: 513-522. 10.1017/S1751731109991388.
CAS
PubMed
Google Scholar
Wang H, Li H, Wang Q, Wang Y, Han H, Shi H: Microarray analysis of adipose tissue gene expression profiles between two chicken breeds. J Biosci. 2006, 31: 565-573. 10.1007/BF02708408.
CAS
PubMed
Google Scholar
Wang HB, Li H, Wang QG, Zhang XY, Wang SZ, Wang YX, Wang XP: Profiling of chicken adipose tissue gene expression by genome array. BMC Genomics. 2007, 8: 193-10.1186/1471-2164-8-193.
PubMed Central
CAS
PubMed
Google Scholar
Takeuchi S, Haneda M, Teshigawara K, Takahashi S: Identification of a novel GH isoform: A possible link between GH and melanocortin systems in the developing chicken eye. Endocrinology. 2001, 142: 5158-5166. 10.1210/en.142.12.5158.
CAS
PubMed
Google Scholar
Baudet ML, Martin B, Hassanali Z, Parker E, Sanders EJ, Harvey S: Expression, translation, and localization of a novel, small growth hormone variant. Endocrinology. 2007, 148: 103-115.
CAS
PubMed
Google Scholar
Nam SY, Lobie PE: The mechanism of effect of growth hormone on preadipocyte and adipocyte function. Obesity Rev. 2000, 1: 73-86. 10.1046/j.1467-789x.2000.00015.x.
CAS
Google Scholar
Cogburn LA: Endocrine manipulation of body composition in broiler chickens. Crit Rev Poult Biol. 1991, 3: 283-305.
Google Scholar
Moellers RF, Cogburn LA: Chronic intravenous infusion of chicken growth hormone increases body fat content of young broiler chickens. Comp Biochem Physiol. 1995, 110A: 47-56.
CAS
Google Scholar
Cogburn LA, Tang J-S, Cui J, Sofer L, Leclercq B, Simon J, Burnside J: DNA microarray analysis of gene expression in liver of broiler chickens divergently selected for growth rate. Poult Sci. 2000, 79 (Suppl. 1): 72-
Google Scholar
Wang X, Carré W, Saxton A, Cogburn LA: Manipulation of thyroid status and/or GH injection alters hepatic gene expression in the juvenile chicken. Cytogenet Genome Res. 2007, 117: 174-188. 10.1159/000103178.
CAS
PubMed
Google Scholar
Lattka E, Eggers S, Moeller G, Heim K, Weber M, Mehta D, Prokisch H, Illig T, Adamski J: A common FADS2 promoter polymorphism increases promoter activity and facilitates binding of transcription factor ELK1. J Lipid Res. 2010, 51: 182-191. 10.1194/jlr.M900289-JLR200.
PubMed Central
CAS
PubMed
Google Scholar
Yin L, Zhang Y, Charron T, Hillgartner FB: Thyroid hormone, glucagon, and medium-chain fatty acids regulate transcription initiated from promoter 1 and promoter 2 of the acetyl-CoA carboxylase-[alpha] gene in chick embryo hepatocytes. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 2000, 1517: 91-99. 10.1016/S0167-4781(00)00267-0.
CAS
Google Scholar
Yin L, Zhang Y, Hillgartner FB: Sterol regulatory element-binding protein-1 interacts with the nuclear thyroid hormone receptor to enhance acetyl-CoA aarboxylase-a transcription in hepatocytes. J Biol Chem. 2002, 277: 19554-19565. 10.1074/jbc.M111771200.
CAS
PubMed
Google Scholar
Kim CW, Moon YA, Park SW, Cheng D, Kwon HJ, Horton JD: Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis. Proc Natl Acad Sci USA. 2010, 107: 9626-9631. 10.1073/pnas.1001292107.
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Carré W, Zhou H, Lamont SJ, Cogburn LA: Duplicated Spot 14 genes in the chicken: characterization and identification of polymorphisms associated with abdominal fat traits. Gene. 2004, 332: 79-88.
CAS
PubMed
Google Scholar
D’Andre Hirwa C, Yan W, Wallace P, Nie Q, Luo C, Li H, Shen X, Sun L, Tang J, Li W, Zhu X, Yang G, Zhang X: Effects of the thyroid hormone responsive spot 14a gene on chicken growth and fat traits. Poult Sci. 2010, 89: 1981-1991. 10.3382/ps.2009-00582.
PubMed
Google Scholar
Cao ZP, Wang SZ, Wang QG, Wang YX, Li H: Association of Spot14a gene polymorphisms with body weight in the chicken. Poult Sci. 2007, 86: 1873-1880.
CAS
PubMed
Google Scholar
Zhan K, Hou ZC, Li HF, Xu GY, Zhao R, Yang N: Molecular cloning and expression of the duplicated thyroid hormone responsive Spot 14 (THRSP) genes in ducks. Poult Sci. 2006, 85: 1746-1754.
CAS
PubMed
Google Scholar
Su S, Zhu H, Li Q, Xie Z: Molecular cloning and sequence analysis of Spot 14 alpha in geese. Brit Poult Sci. 2009, 50: 459-466. 10.1080/00071660903110893.
CAS
Google Scholar
Graugnard DE, Piantoni P, Bionaz M, Berger LL, Faulkner DB, Loor JJ: Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weining growth in Angus x Simmental cattle fed high-starch or low-starch diets. BMC Genomics. 2009, 10: 142-10.1186/1471-2164-10-142.
PubMed Central
PubMed
Google Scholar
Graugnard DE, Berger LL, Faulkner DB, Loor JJ: High starch diets induce precocious adipogenic gene network up-regulation in longissimus lumborum of early-weaned Angus cattle. Brit J Nutr. 2010, 103: 953-963. 10.1017/S0007114509992789.
CAS
PubMed
Google Scholar
Harvatine KJ, Bauman DE: SREBP1 and thyroid hormone responsive Spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J Nutr. 2006, 136: 2468-2474.
CAS
PubMed
Google Scholar
Piantoni P, Bionaz M, Graugnard D, Daniels K, Everts R, Rodriguez-Zas S, Lewin H, Hurley H, Akers M, Loor J: Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development. BMC Genomics. 2010, 11: 331-10.1186/1471-2164-11-331.
PubMed Central
PubMed
Google Scholar
Bauman DE, Harvatine KJ, Lock AL: Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Ann Rev Nutr. 2011, 31: 299-319. 10.1146/annurev.nutr.012809.104648.
CAS
Google Scholar
Zhu Q, Anderson GW, Mucha GT, Parks EJ, Metkowski JK, Mariash CN: The Spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland. Endocrinology. 2005, 146: 3343-3350. 10.1210/en.2005-0204.
CAS
PubMed
Google Scholar
Anderson GW, Zhu Q, Metkowski J, Stack MJ, Gopinath S, Mariash CN: The Thrsp null mouse (Thrsptm1cnm) and diet-induced obesity. Mol Cell Endocrinol. 2009, 302: 99-107. 10.1016/j.mce.2009.01.005.
PubMed Central
CAS
PubMed
Google Scholar
Moncur JT, Park JP, Memoli VA, Mohandas TK, Kinlaw WB: The “Spot 14” gene resides on the telomeric end of the 11q13 amplicon and is expressed in lipogenic breast cancers: Implications for control of tumor metabolism. Proc Natl Acad Sci. 1998, 95: 6989-6994. 10.1073/pnas.95.12.6989.
PubMed Central
CAS
PubMed
Google Scholar
Kinlaw WB, Quinn JL, Wells WA, Roser-Jones C, Moncur JT: Spot 14: A marker of aggressive breast cancer and a potential therapeutic target. Endocrinology. 2006, 147: 4048-4055. 10.1210/en.2006-0463.
CAS
PubMed
Google Scholar
Kirschner LS, Mariash CN: Adipose S14 mRNA is abnormally regulated in obese subjects. Thyroid. 1999, 9: 143-148. 10.1089/thy.1999.9.143.
CAS
PubMed
Google Scholar
Kinlaw WB, Church JL, Harmon J, Mariash CN: Direct evidence for the role of the “Spot 14” protein in the regulation of lipid synthesis. J Biol Chem. 1995, 270: 16615-16618. 10.1074/jbc.270.28.16615.
CAS
PubMed
Google Scholar
Jump DB, Clarke SD, MacDougald O, Thelen A: Polyunsaturated fatty acids inhibit S14 gene transcription in rat liver and cultured hepatocytes. Proc Natl Acad Sci U S A. 1993, 90: 8454-8458. 10.1073/pnas.90.18.8454.
PubMed Central
CAS
PubMed
Google Scholar
Kinlaw WB, Schwartz HL, HAMBLIN PS, Mariash CN, Oppenheimer JH: Triiodothyronine rapidly reverses inhibition of S14 gene transcription by glucagon. Endocrinology. 1988, 123: 2255-2260. 10.1210/endo-123-5-2255.
CAS
PubMed
Google Scholar
Breuker C, Moreau A, Lakhal L, Tamasi V, Parmentier Y, Meyer U, Maurel P, Lumbroso S, Vilarem MJ, Pascussi JM: Hepatic expression of thyroid hormone-responsive Spot 14 protein is regulated by constitutive androstane receptor (NR1I3). Endocrinology. 2010, 151: 1653-1661. 10.1210/en.2009-1435.
CAS
PubMed
Google Scholar
Liu H-C, Towle HC: Functional synergism between multiple thyroid hormone response elements regulates hepatic expression of the rat S14 gene. Mol Endocrinol. 1994, 8: 1021-1037. 10.1210/me.8.8.1021.
CAS
PubMed
Google Scholar
Darras VM, Van Herck SL: Iodothyronine deiodinase structure and function: from ascidians to humans. J Endocrinol. 2012, 215: 189-206. 10.1530/JOE-12-0204.
CAS
PubMed
Google Scholar
Chutkow WA, Patwari P, Yoshioka J, Lee RT: Thioredoxin-interacting protein (Txnip) is a critical regulator of hepatic glucose production. J Biol Chem. 2008, 283: 2397-2406.
CAS
PubMed
Google Scholar
Blouet C, Liu SM, Jo YH, Chua S, Schwartz GJ: TXNIP in Agrp neurons regulates adiposity, energy expenditure, and central leptin sensitivity. J Neurosci. 2012, 32: 9870-9877. 10.1523/JNEUROSCI.0353-12.2012.
PubMed Central
CAS
PubMed
Google Scholar
Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP: T1R3 and gustducin in gut sense sugars to regulate expression of Na+−glucose cotransporter 1. Proc Natl Acad Sci. 2007, 104: 15075-15080. 10.1073/pnas.0706678104.
PubMed Central
CAS
PubMed
Google Scholar
Ren X, Zhou L, Terwilliger R, Newton SS, de Araujo IE: Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci. 2009, 3: 12-
PubMed Central
PubMed
Google Scholar
Mace OJ, Lister N, Morgan E, Shepherd E, Affleck J, Helliwell P, Bronk JR, Kellett GL, Meredith D, Boyd R, Pieri M, Bailey PD, Pettcrew R, Foley D: An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol. 2009, 587: 195-210. 10.1113/jphysiol.2008.159616.
PubMed Central
CAS
PubMed
Google Scholar
Yoshinari K, Sato T, Okino N, Sugatani J, Miwa M: Expression and induction of cytochromes P450 in rat white adipose tissue. J Pharmacol Exp Ther. 2004, 311: 147-154. 10.1124/jpet.104.067066.
CAS
PubMed
Google Scholar
Ibdah JA, Paul H, Zhao Y, Binford S, Salleng K, Cline M, Matern D, Bennett MJ, Rinaldo P, Strauss AW: Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest. 2001, 107: 1403-1409. 10.1172/JCI12590.
PubMed Central
CAS
PubMed
Google Scholar
Baes M, Huyghe S, Carmeliet P, Declercq PE, Collen D, Mannaerts GP, Van Veldhoven PP: Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem. 2000, 275: 16329-16336. 10.1074/jbc.M001994200.
CAS
PubMed
Google Scholar
Baker ME: Evolution of 17ß-hydroxysteroid dehydrogenases and their role in androgen, estrogen and retinoid action. Mol Cell Endocrinol. 2001, 171: 211-215. 10.1016/S0303-7207(00)00414-7.
CAS
PubMed
Google Scholar
Holness MJ, Sugden MC: Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003, 31: 1143-1151. 10.1042/BST0311143.
CAS
PubMed
Google Scholar
Goldstein I, Rotter V: Regulation of lipid metabolism by p53 – fighting two villains with one sword. Trends Endocrinol Metab. 2012, 23: 567-575. 10.1016/j.tem.2012.06.007.
CAS
PubMed
Google Scholar